![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Часть 3. Обработка многократных измерений
Задание Определить вид ЗРВ по критерию Пирсона; Записать результат с доверительной вероятностью P=0.98.
1.Определяем среднее арифметическое и стандартное отклонение для данных таблицы:
2.С помощью правила «трех сигм» проверяем наличие или отсутствие промахов. Таким образом, ни один из результатов не выходит за границы интервала [ 3.Построение гистограммы и выдвижение гипотезы о виде закона распределения вероятности. Участок оси абсцисс, на котором располагается вариационный ряд значений физической величины, разобьем на k одинаковых интервалов Принимая k=9, получим Т.к. в крайние интервалы попадает меньше 5 наблюдений, то объединим их с соседними.
![]() Из вида гистограммы можно сделать предположение о том, что вероятность результата измерения подчиняется нормальному закону. Проверим правдивость этой гипотезы. 4.Проверка нормальности закона распределения по критерию Пирсона. Т.к. в предыдущем пункте выдвинута гипотеза о нормальности распределения, то для расчета вероятностей используем функцию Лапласа: В данном случае значения x1 и x2 соответствуют началу и концу интервала. Для каждого из значений нужно рассчитать относительный доверительный интервал Найдя, таким образом, значения Pi для каждого интервала ki, заполним соответствующие ячейки таблицы 1, а затем рассчитаем значение c2 – критерия для каждого интервала.
Определим табличное (критическое) значение c2, задавшись доверительной вероятностью 0.94 и вычислив по формуле r=k-3 число степеней свободы: r=6-3=3 Таким образом, с вероятностью 0.98 гипотеза о нормальности распределения вероятности результата измерения принимается.
Дата добавления: 2015-03-29; Просмотров: 796; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |