Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Химико-термическая обработка стальных изделий




Цементация. Цементацией называется поглощение углерода поверхностным слоем заготовки, который после закалки становится твердым; в сердцевине заготовка остается вязкой. Цементации подвергают такие изделия, которые работают одновременно на истирание и удар. Существуют два вида цементации: цементация твердым карбюризатором и газовая цементация.

При цементации твердым карбюризатором применяют древесный уголь в смеси с углекислыми солями — карбонатами (ВаСО3, Nа2СО3, К2СО3, СаСО3 и др.).
Цементации подвергают заготовки из углеродистой или легированной стали с массовым содержанием углерода до 0,08 %. Для деталей, подверженных большим напряжениям, применяют стали, содержащие до 0,3 % С. Такое содержание углерода обеспечивает высокую вязкость сердцевины после цементации. Для цементации заготовки помещают в стальные цементационные ящики, засыпают карбюризатором, покрывают крышками, тщательно обмазывают щели глиной, помещают ящики в печь и выдерживают там 5—10 ч при температуре 930—950 °С.

При газовой цементации в качестве карбюризатора применяют различные газы и газовые смеси (природный, светильный, генераторный газы и др.). В их состав кроме оксида углерода входят углеводороды, из которых особое значение имеет метан СН4. Газовую цементацию выполняют в герметически закрытых безмуфельных или муфельных печах непрерывного действия при температуре 900— 950 °С и непрерывном потоке цементирующего газа или в шахтных печах периодического действия. В шахтных печах для цементации используют жидкие углеводороды (керосин, синтин), которые каплями подаются в печь и, испаряясь, образуют газы- карбюризаторы.
Преимуществом газовой цементации перед цементацией твердым карбюризатором являются двух-трехкратное ускорение процесса, чистота рабочего места, возможность лучшего управления процессом. Газовая цементация применяется очень широко.

Диффузионная металлизация. Наиболее распространенными видами диффузионной металлизации являются алитирование, хромирование, силицирование.
Алитирование представляет собой поверхностное насыщение стальных и чугунных заготовок алюминием с образованием твердого раствора алюминия в железе. Его применяют преимущественно для деталей, работающих при высоких температурах (колосников, дымогарных труб и др.), так как при этом значительно (до 10000С) повышается жаростойкость стали.

Для алитирования алюминий сначала наносят на заготовку распылением жидкой струи сжатым воздухом, затем нанесенный слой алюминия защищают жаростойкой обмазкой и производят диффузионный отжиг заготовок при температуре 920 °С в течение 3 ч. В процессе отжига поверхностный слой заготовки насыщается алюминием на глубину в среднем 0,5 мм.
Диффузионное хромирование производится в порошковых смесях, составленных из феррохрома и шамота, смоченных соляной кислотой или в газовой среде при разложении паров хлорида хрома СrCl2. Хромированию подвергаются в основном стали с массовым содержанием углерода не более 0,2 %. Хромированный слой низкоуглеродистой стали незначительно повышает твердость, но обладает большой вязкостью, что позволяет подвергать хромированные детали сплющиванию, прокатке и т. п. Хромированные детали имеют высокую коррозионную стойкость в некоторых агрессивных средах (азотной кислоте, морской воде). Это позволяет заменять ими детали из дефицитной высокохромовой стали.

Силицирование — процесс химико-термической обработки, состоящий в высокотемпературном (950—1100 °C) насыщении поверхности стали кремнием. Силицирование придаёт стали высокую коррозионную стойкость в морской воде, в азотной, серной и соляной кислотах и несколько увеличивает стойкость против износа. Силицирование может производиться в газообразных и жидких средах как электролизным, так и безэлектролизным методом. Силицированный слой отличается повышенной пористостью толщина его 300—1000 мкм. Несмотря на низкую твёрдость 200—300 HV, силицированный слой обладает высокой износостойкостью после пропитки маслом при температурах 170—200 °C. Силицированию подвергают детали, используемые в оборудовании химической, бумажной и нефтяной промышленности (валики насосов, трубопроводы, арматура, гайки, болты и т. д.). Силицирование широко применяют для повышения сопротивления окислению при высоких температурах сплавов молибдена. Так же силицированию подвергают детали из карбида кремния (SiC). Пример: электрические нагреватели из карбида кремния, подшипники скольжения для нефтяной и химической промышленности, конструкционные детали и др.

Азотирование. Цель азотирования — придание поверхностному слою деталей высокой твердости, износостойкости и коррозионной стойкости. Азотирование осуществляется при выделении активного азота из диссоциирующего аммиака 2NH3 -> 2N + ЗН2.
Азотируют легированную сталь, содержащую алюминий, титан, вольфрам, ванадий, молибден или хром (например, сталь марок 35ХМЮА, 35ХЮА и др.).
Перед азотированием заготовки подвергают закалке и высокому отпуску. Азотирование производят в печах при температуре 500— 600 °С. Активный азот, выделяющийся при диссоциации аммиака, диффундирует в поверхностный слой и вместе с перечисленными легирующими элементами и железом образует очень твердые химические соединения — нитриды (A1N, MoN, Fe3N и др.).
Азотирование на глубину 0,2—0,5 мм продолжается 25—60 ч и в этом его основной недостаток. Однако азотирование имеет ряд преимуществ перед цементацией: температура нагрева сравнительно низкая, а твердость более высокая (1100—1200 по Виккерсу, вместо 800—900 после цементации и закалки); у азотированных изделий большие коррозионная стойкость, сопротивление усталости и меньшая хрупкость. Поэтому азотирование широко применяют для деталей из стали и чугуна (шестерен, коленчатых валов, цилиндров двигателей внутреннего сгорания и т. д.).
Азотирование приводит к некоторому увеличению размеров заготовок, поэтому после азотирования их подвергают шлифованию.

Цианирование. Цианирование — насыщение поверхностного слоя одновременно углеродом и азотом; оно бывает жидкостным и газовым.
Жидкостное цианирование производится в ваннах с расплавами цианистых солей (NaCН, KCН, Са(CN)2., и др.) при температуре, достаточной для разложения их с выделением активных атомов Си N.
Низкотемпературное (550—600 °С) цианирование применяют главным образом для инструментов из быстрорежущей стали с целью повышения их стойкости и производится в расплавах чистых цианистых солей. Высокотемпературное (800—850 °С) цианирование осуществляется в ваннах, содержащих 20—40 %-ные расплавы цианистых солей с нейтральными солями (NaCl, Na.2CO3 и др.) для повышения температуры плавления ванны. Продолжительность жидкостного цианирования от 5 мин до 1 ч. Глубина цианирования 0,2—0,5 мм.
После цианирования заготовки подвергают закалке и низкому отпуску. Цианирование, как и цементацию, применяют для различных изделий, при этом коробление заготовок значительно меньше, чем при цементации, а износо- и коррозионная стойкость более высокие. Недостатком жидкостного цианирования является ядовитость цианистых солей, а также их высокая стоимость.
Газовое цианирование отличается от газовой цементации тем, что к цементирующему газу добавляют аммиак, дающий активизированные атомы азота. Газовое цианирование, так же как и жидкостное, разделяется на низкотемпературное и высокотемпературное.
При газовом цианировании, называемом также нитроцементацией, отпадает необходимость в применении ядовитых солей и, кроме того, имеется возможность обработки более крупных деталей.
28)Влияние легирующих элементов и степени дегирования на структуру с войства сталей.

Элементы, специально вводимые в сталь с целью изменения ее строе-

ния и свойств, называют легирующими элементами – Л.Э.

По химическому составу стали могут быть распределены на следую-

щие группы:

– низколегированные – Л.Э. < 5 %;

– среднелегированные – Л.Э. > 5 %;

– высоколегированные – Л.Э. ≥ 10 %.

В обозначении марок первые цифры указывают среднюю массовую

долю углерода: в сотых долях процента для конструкционных сталей или в

десятых долях процента для инструментальных сталей. Буквы за цифрами

означают: Р – бор, Ю – алюминий, С – кремний, Т – титан, Ф – ванадий, Х –

хром, Г – марганец, Н – никель, М – молибден, В – вольфрам. Цифры, стоя-

щие после букв, указывают примерную массовую долю легирующего эле-

мента в целых единицах, процентах. Отсутствие цифры означает, что в марке

содержится до 1,5 % этого легирующего элемента. Буква А в конце наимено-

вания марки означает «высококачественная сталь». «Особовысококачествен-

ная сталь» обозначается буквой Ш через тире в конце наименования марки.

Например, качественная – 30ХГС, высококачественная – 30ХГСА, особовы-

сококачественная – 30ХГС-Ш.

Назначение легирования. Легирование проводится для получения у

сталей особых свойств: магнитных; высокого электросопротивления; задан-

ного коэффициента линейного расширения; коррозионной стойкости; жаро-

прочности; жаростойкости; износостойкости; окалиностойкости; теплостой

кости.

Перечисленные свойства можно достичь лишь у высоколегированных

сталей.

Введение в сталь небольшого количества легирующих элементов и

получение низколегированных сталей осуществляется для повышения прока-

ливаемости.

В отожженном состоянии легированные стали по механическим свой-

ствам практически не отличаются от углеродистых.

Влияние легирующих элементов на повышение механических свойств

сталей достигается при использовании сталей в термически упрочненном со-

стоянии.

В зависимости от структуры, получаемой при охлаждении на спокойном воздухе, стали часто делят на следующие структурные классы: перлитный, мартенситный, аустенитный, карбидный и ферритный. К перлитному классу относят стали, которые при охлаждении на воздухе приобретают структуру перлита, сорбита или троостита.

К мартенситному классу относят легированные стали, в которых при охлаждении на воздухе появляется структура мартенсита. К аустенитному классу относят легированные стали, когда в них не наблюдается распада аустеннта при самом большом содержании примесей. К сталям карбидного класса относят стали мартенситного или аустенитного класса с карбидообразующимн элементами (хром, вольфрам и др.), благодаря чему в структуре металла наряду с мартенситом или аустенитом содержится значительное количество карбидов.




Поделиться с друзьями:


Дата добавления: 2015-04-23; Просмотров: 914; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.