КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Алфавитный подход
Если информация представлена в виде дискретного сообщения, то логично считать количеством информации его длину, то есть общее число знаков в сообщении. Но длина сообщения зависит не только от содержащейся в нем информации. На нее влияет мощность алфавита используемого языка. Чем меньше знаков в используемом алфавите, тем длиннее сообщение. Так, например, в алфавите азбуки Морзе всего три знака (точка, тире, пауза), поэтому для кодирования каждой русской или латинской буквы нужно использовать несколько знаков, и текст, закодированный по Морзе, будет намного длиннее, чем при обычной записи. Пример: Сигнал SOS: 3 знака в латинском алфавите; 11 знаков в алфавите Морзе: ··· пауза – – – пауза ···. Для упорядочивания измерений информационный объем сообщений принято измерять в битах. Один бит соответствует одному знаку двоичного алфавита. Итак, чтобы измерить длину сообщения, его нужно представить в двоичном виде и подсчитать количество двоичных знаков – битов. При этом совсем не обязательно уметь интерпретировать сообщения. Пример: Пусть сообщение в двоичном алфавите выглядит следующим образом: 000100010001. Мы не знаем, какая информация была заложена в этом сообщении, но можем легко подсчитать его длину – 12 двоичных знаков, следовательно, его информационный объем равен 12-ти битам. Такой способ измерения количества информации называется алфавитным подходом. При этом измеряется не содержание информации с точки зрения его новизны и полезности, а размер несущего информацию сообщения. Мы уже убедились, что при алфавитном подходе к определению количества информации одни и те же сведения, закодированные по-разному, будут иметь различный информационный объем. Сообщения одинаковой длины могут нести совершенно как совершенно бесполезные сведения, так и нужную информацию. Пример: Применяя алфавитный подход, получаем, что информационный объем слов “фыырпбьощ” и “компьютер” совершенно одинаков, а слов “ученик” и “учащийся” – различен. Если алфавит содержит 2n знаков, то каждый из его знаков можно закодировать с помощью n знаков двоичного алфавита. Таким образом, объем информации, содержащейся в сообщении длиной m при использовании алфавита мощностью 2n, равен m·n бит. Найдем информационный объем слова SOS, записанного в компьютерной кодировке. При кодировании букв в компьютере используется либо алфавит ASCII (American Standard Code for Information Interchange — американский стандартный код обмена информацией), состоящий из 28=256 знаков, либо алфавит Unicode, мощность которого 216 = 65536. В слове SOS три буквы, следовательно, его информационный объем 3·8=24 или 3·16=48 бит, в зависимости от используемой кодировки. Алфавитный подход удобен при подсчете количества информации, хранимого, передаваемого и обрабатываемого техническими устройствами. Действительно, устройствам нет дела до содержательной стороны сообщений. Компьютеры, принтеры, модемы работают не с самой информацией а с ее представлением в виде сообщений. Оценить информационные результаты их работы как полезные или бесполезные может только человек.
Дата добавления: 2015-04-23; Просмотров: 621; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |