Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Последовательное и параллельное соединение конденсаторов




При параллельном соединении k конденсаторов полная емкость равна сумме емкостей отдельных конденсаторов:

C = C1 + C2 + … + Ck.

При последовательном соединении k конденсаторов складываются обратные емкостям величины:

1/C = 1/C1 + 1/C2 + … + 1/Ck.

Энергия электрического поля заряженного конденсатора равна:

W = qU / 2 = CU2 / 2 = q2 / (2C).

Энергия заряженного проводника. Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды d q, одинаковы и равны потенциалу проводника. Заряд q, находящийся на проводнике, можно рассматривать как систему точечных зарядов d q. Тогда энергия заряженного проводника

Приняв во внимание определение емкости, можно записать

Любое из этих выражений определяет энергию заряженного проводника.

Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд + q, равен , а потенциал обкладки, на которой находится заряд - q, равен . Энергия такой системы

.

Энергию заряженного конденсатора можно представить в виде

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S · d представляет собой объем V, занимаемый полем. Следовательно,

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна

C учетом соотношения можно записать

В изотропном диэлектрике направления векторов D и E совпадают и
Подставим выражение , получим

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поля Е. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов q i на величину d r i, составляет

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р. Следовательно, .
Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим

Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика

.

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл:

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Единица измерения в СИ — 1 Ампер (А) = 1 Кулон / секунду.

Правила Кирхгофа.

 

1. Алгебраическая сумма сил токов в каждом узле (точке разветвления) равна 0. - следствие закона сохранения электрического заряда.

2. В любом замкнутом контуре цепи алгебраическая сумма произведений сил токов в отдельных участках на их сопротивления равна алгебраической сумме ЭДС источников в этих контурах.

- следствие закона Ома для неоднородного участка цепи

 

Электродвижущая сила (ЭДС) источника тока равна работе, которую совершают сторонние силы по перемещению единичного положительного электрического заряда вдоль всей цепи.
E=Act\q
q - переносимый заряд
Аст - работа сторонних сил

Разность потенциалов - скалярная величина, равная отношению работы электрического поля по перемещению положительного заряда из одной точки поля в другую точку к величине этого заряда. В СИ разность потенциалов измеряется в вольтах.

напряжение- Разность потенциалов между концами проводника.
Измеряется в вольтах.

Закон Ома в дифференциальной форме

Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:
j=σ*E

где
j- вектор плотности тока,
σ — удельная проводимость,
E — вектор напряжённости электрического поля.

Закон Джоуля-Ленца в дифференциальной форме - удельная мощность тока равна скалярному произведению векторов плотности тока и напряженности электрического поля:

,

где s - удельная проводимость;

r - удельное сопротивление среды.

Закон Джоуля-Ленца в дифференциальной форме носит совершенно общий характер, т. е. не зависит от природы сил, возбуждающих электрический ток. Закон Джоуля-Ленца, как показывает опыт, справедлив и для электролитов и для полупро

Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника;

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия
равна работе тока.

В системе СИ:


ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

[Q] = 1 Дж



МОЩНОСТЬ ПОСТОЯННОГО ТОКА

- отношение работы тока за время t к этому интервалу времени.



В системе СИ:



61




Поделиться с друзьями:


Дата добавления: 2015-04-23; Просмотров: 475; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.