КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Взаимодействие неаллельных генов (комплементарность, эпистаз и полимерия). Доминантный и рецессивный эпистаз
Взаимодействие аллельных генов (полное доминирование, неполное доминирование, сверхдоминирование и кодоминирование). Множественные аллели. Наследование групп крови человека по АВО системе антигенов. Основные понятия генетики. Чистые линии. Гибридизация и гибрид. Аллельные гены. Гомологичные хромосомы. Понятие о гомозиготности и гетерозиготности, гомогаметности и гетерогаметности. Доминантные и рецессивные признаки. Моногенное и полигенное наследования признаков. Кариотип и идиограмма (кариограмма). Характеристика кариотипа человека в норме. Классификация хромосом. Хромосомы — структурные компоненты ядра. Строение, химический состав, функции. Классификации хромосом. Правила хромосомных наборов. Хромосомы – нуклеопротеидные структуры в ядрах эукариот, которые являются единицами морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки. Число хромосом в клетках каждого биологического вида постоянно. Строение. 1)Центромера (первичная перетяжка) это место соединения двух хроматид; к центромере присоединяются нити веретена деления. По сторонам от центромеры лежат плечи хромосомы. В зависимости от места расположения центромеры хромосомы делят на: акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом); субметацентрические (неравноплечие, напоминающие по форме букву L); метацентрические (V-образные хромосомы, равноплечие). 2)Вторичная перетяжка – ядрышковый организатор, содержит гены рРНК, имеется у одной – двух хромосом в геноме. Теломеры – концевые участки хромосом, содержащие до 10 тысяч пар нуклеотидов с повторяющейся последовательностью. Хромосомы состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс—хроматин, получивший свое название за способность окрашиваться основными красителями. Как было доказано, ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию — программу развития клетки, организма, записанную с помощью особого кода. Количество ДНК в ядрах клеток организма данного вида постоянно и пропорционально их плоидности. В диплоидных соматических клетках организма ее вдвое больше, чем в гаметах. Увеличение числа хромосомных наборов в полиплоидных клетках сопровождается пропорциональным увеличением количества ДНК в них. Белки составляют значительную часть вещества хромосом. На их долю приходится около 65% массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки. Помимо ДНК и белков в составе хромосом обнаруживаются также РНК, липиды, полисахариды, ионы металлов. Функция хромосом заключается: - В хранении наследственной информации. Хромосомы являются носителями генетической информации. - В передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК. - В реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и соответственно того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.
Совокупность признаков хромосомного набора, число размер и форма хромосом — кариотип. Идеограмма — это систематизированный кариотип. Хромосомы расположены по мере убывания их величины. В медицинской генетике с помощью идиограммы диагностируют некоторые хромосомные болезни. Кариотип человека. В кариотипе выделяют аутосомы и половые хромосомы X и Y. 44А+ХХ (№45,46) — соматическая клетка, гамета: 22А+Х 44А+ХY (№45-Х, №46Y) 22А+Х, 22А+Y Классификация хромосом 66 страница в методичке
46. Основные понятия генетики. Наследственность и наследование, изменчивость. Материальные носители генетической информации – гены. Генотип и геном. Фенотип и фен. Признак. Норма реакции. Наследственность – свойство организмов передавать свои признаки и качества из поколения в поколение; свойство организмов обеспечивать материальную и функциональную преемственность между поколениями. Наследование – способ распределения наследственной информации родительских организмов в ряду последующих. Изменчивость – свойство жизни, проявляющееся в способности организмов одного вида отличаться друг от друга в результате появления изменений отдельных признаков у представителей одного и того же или разных поколений. Генетическая информация – это наследственная информация, носителем которой является ДНК. Ген - участок молекулы ДНК, на котором закодирована информация о синтезе определенного белка или нуклеиновой кислоты. Ген имеет ряд свойств: - дискретность действия, т.е развитие различных признакв контролируется разными генами - стабильность - при отсутствии мутации он передается в ряду поколений в независимом виде - действие генов специфично, каждый из них обуславливает развитие определенного признака или их группы Генотип – совокупность наследственного материала заключенная в диплоидном наборе хромосом. Геном — совокупность наследственного материала, заключенного в гаплоидном наборе хромосом. Фенотип – совокупность всех признаков организма, развивающихся на основе генотипа ПОД ВОЗДЕЙСТВИЕМ ФАКТОРОВ СРЕДЫ. Фен – отдельный признак, определяемый отдельным геном. Признак – это любое качество или свойство, характеризующее часть организма, целостный организм (особь) или группу особей. Норма реакции— пределы в которых в зависимости от условий среды изменяются фенотипические проявления генотипа.
Чистые линии - генотипически однородное потомство у которых почти все гены находятся в гомозиготном состоянии. Гибридизация- это процесс образования или получения гибридов, в основе которого лежит объединение генетического материала разных клеток в одной клетке. Аллельные гены - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологических хромосом, определяющие варианты развития одного и того же признака. Гомологичные хромосомы - парные хромосомы, которые содержат один и тот же набор генов. Гомозиготность- состояние, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Гетерозиготность - состояние, при котором гомологичные хромосомы несут разные аллели того или иного гена. Гомогаметность - характеристика организма (или группы организмов), имеющего в хромосомном наборе пару или несколько пар гомологичных половых хромосом и вследствие этого образующих одинаковые по набору хромосом гаметы. Гетерогаметность - характеристика организма или группы организмов, имеющих в своём хромосомном наборе одну половую хромосому (тип ХО) или пару различающихся половых хромосом (X и Y) и вследствие этого образующих разные гаметы. Доминантные признаки- признаки, проявляющиеся у гибридов первого поколения при скрещивании чистых линий. Рецессивные признаки- признаки, передающиеся по наследству при гибридизации, но подавляющиеся (не проявляющиеся) у гибридов первого поколения. Моногенное наследование подразумевает наследование одного гена (одной пары признаков) и относится к аллельным генам. Основано на первом и втором законах наследственности. В рамках моногенного наследования выделяют: • аутосомно-доминантный тип (на одной из двух аутосом расположен доминантный ген); • аутосомно-рецессивный тип (на одной из двух аутосом расположен рецессивный ген); • Х-сцепленный доминантный тип (на Х-хромосоме расположен доминантный ген); • Х-сцепленный рецессивный тип (на Х-хромосоме расположен рецессивный ген); • Y-сцепленный тип или голандрическое наследование (ген расположен на Y-хромосоме). Полигенное наследование основано на третьем законе наследственности. Оно подразумевает наследование двух генов (пар признаков) и более и относится к неаллельным генам. Полигенное наследование нередко называют мультигенным или мультифакториальным, имея в виду наследование одновременно не одного, а нескольких определенных генов, проявляющих свое действие в специфических условиях окружающей среды, при наличии провоцирующих внешних факторов, как правило, усиливающих индивидуальное действие генов, эффект которых суммируется (аддитивное действие).
48. Закономерности наследования. Моногибридное, дигибридное и полигибридное скрещивание. Изменения, внесенные Г. Менделем в гибридологический метод. Первый закон Менделя – закон единообразия гибридов первого поколения. Гипотеза «чистоты гамет». Менделирующие признаки человека. Моногибридное скрещивание - при котором родительские формы отличаются друг от друга по одной паре альтернативных признаков. Закон единообразия гибридов первого поколения (первый закон Менделя) — при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей. Гипотеза чистоты гамет - находящиеся в каждом организме пары наследственных факторов не смешиваются и не сливаются и при образовании гамет по одному из каждой пары переходят в них в чистом виде: одни гаметы несут доминантный ген, другие — рецессивный. В каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи. Менделирующие признаки- наследование происходит по закономерностям, установленным Г. Менделем (голубые, карие глаза и тд)
49. Второй закон Менделя – закон расщепления признаков у гибридов второго поколения. Третий закон Менделя – закон независимого комбинирования признаков. Статистический характер законов Менделя и условия их проявления. Закон расщепления (второй закон Менделя) — при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1. Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Законы Менделя носят статистический и универсальный характер, однако для проявления законов Менделя необходимо соблюдать ряд условий: 1) гены разных аллельных пар должны находиться в разных хромосомах. 2) между генами не должно быть сцепления и взаимодействия кроме полного доминирования 3) должна быть равная вероятность образования гамет и зигот разного типа, РАВНАЯ ВЕРОЯТНОСТЬ выживания организмов с разными генотипами. 4) Должна быть 100% пенетрантность гена, отсутствовать плейотропное действие генов.
Сверхдоминирование — более сильное проявление признака у гетерозиготной особи, чем у любой гомозиготной. Кодоминирование — появление у гибридов нового признака обусловленного взаимодействием двух разных аллелей одного гена. Множественные аллели – аллели представленные в популяции более чем двумя, возникающие в результате многократного мутирования одного и того же локуса хромосомы, помимо доминантных и рецессивных генов появляются промежуточные аллели, которые по отношению к доминанте ведут себя рецессивно, а по отношению к рецессивному как доминантный (IА-доминантный,IО-рецессивный, IВ-промежуточный).
Комплементарность в генетике — присутствие в одном генотипе двух генов из разных аллельных пар приводит к появлению нового варианта признака. Пример, норм слух у человека. Эпистаз — когда ген из одной аллельной пары подавляет действие гена из другой алелльной пары. Доминантный эпистаз — форма эпистаза, выражающаяся в подавлении доминантным аллелем одного (эпистатического) гена действие аллельной пары другого (гипостатического) гена. Рецессивный эпистаз — рецессивный аллель эпистатического гена, находясь в гомозиготном состоянии, подавляет экспрессию другого (гипостатического) гена. Полимерия — доминантные гены из разных аллельных пар влияют на степень проявления одного и того же признака. а) кумулятивная – степень проявления признака зависит от числа доминантных генов в генотипе человека, чем больше, тем сильнее выражены признаки; б) некумулятивная – достаточно одного доминантного гена для проявления признака, если присутствуют только рецессивные – признак не проявляется.
Дата добавления: 2015-04-23; Просмотров: 1699; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |