Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общая характеристика электромагнитных полей




Электромагнитные поля. Их хар-ки. Ист-ки электромагн. полей и классификация электромагн. излучений.

Спектр электромагнитного излучения

Методы снижения вибрации

Нормирование вибрации

I направление. Санитарно-гигиеническое.

II направление. Техническое (защита оборудования).

ГОСТ 12.1.012-90 ССБТ Вибрационная безопасность.

Октава f1®f2, f2/f1=2, fСР=

При санитарно-гигиеническом нормировании разных видов вибрации используется логарифмический уровень виброскорости в октавных полосах ср. геом. частот.

Граничные частоты октавных полос:

1,4-2,8 2,8-5,6 5,6-11,2... 45-90

2 4 8 63 ср. геом. частоты

1. Снижение вибрации в источнике ее возникновения.

2. Конструктивные методы (виброгашение, виброденфирование - подбор опр. видов материалов, виброизоляция).

3. Организационные меры. Организация режима труда и отдыха.

4. Использование ср-в инд. защиты (защита опорных пов-тей)

 

В современных условиях научно-технического прогресса в результате развития различных видов энергетики и промышленности электромагнитные излучения занимают одно из ведущих мест по своей экологической и производственной значимости среди других факторов окружающей среды.

В целом общий электромагнитный фон состоит из источников естественного (электрические и магнитные поля Земли, атмосферики, радиоизлучения Солнца и галактик) и искусственного (антропогенного) происхождения (телевизионные и радиостанции, линии электропередачи, электробытовая техника и другие) излучений.

Уровень естественного электромагнитного фона в некоторых случаях бывает на несколько порядков ниже уровней электромагнитных излучений, создаваемых антропогенными источниками. Электромагнитные излучения космического, околоземного и биосферного пространств играют определенную роль в организации жизненных процессов на Земле, и в ряде случаев выявляется их биологическая значимость.

1.1. Электромагнитные излучения радиочастот и сверхвысоких частот

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязан­ные переменные электрическое поле и магнитное поле. Взаимная связь электрического Е и магнитного Н полей заключается в том, что всякое изменение одного из них приводит к появ­лению другого: переменное электрическое поле, порождаемое уско­ренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке простран­ства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источ­ника и не исчезает с устранением источника (например, радио­волны не исчезают с прекращением тока в излучившей их антенне).

Электромагнитное поле в вакууме описывается напряженностью электри­ческого поля Е и магнитной индукцией В. Электромагнитное поле в среде характеризуется дополнительно двумя вспомогательными величина­ми: напряженностью магнитного поля Н и электрической индукцией D. Связь компонентов электромагнитного поля с зарядами и то­ками описывается уравнениями Максвелла.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ представляют собой электромагнитные колебания, распространяющиеся в пространстве с конеч­ной скоростью, зависящей от свойств среды (рис. 1).

Рис. 1. Электромагнитные волны

Существо­вание электромагнитных волн предсказано английским физиком М. Фарадеем в 1832 г. Другой английский ученый, Дж. Максвелл, в 1865 г. теоретически показал, что электромагнитные колебания не остаются локализован­ными в пространстве, а распространяются во все стороны от источника. Теория Максвелла позволила единым образом подойти к описанию радио­волн, оптического излучения, рентгеновского излучения, гамма-излучения. Оказалось, что все эти виды излуче­ния – электромагнитные волны с различной длиной волны λ, т. е. родственны по своей природе. Каждое из них имеет своё определён­ное место в единой шкале электромагнитных волн (рис. 2).

Рис. 2. Шкала электромагнитных волн

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

Электромагнитные волны различных диапазонов длин волн характеризуются различными способами возбуждения и регистрации, по-разному взаимо­действуют с веществом. Процессы излучения и поглощения электромагнитных волн от самых длинных до ИК излучения достаточно полно описываются соотношениями классической электро­динамики.

В диапазонах более коротких длин волн, в особен­ности в диапазонах рентгеновских и γ-лучей, доминируют процессы, имеющие квантовую природу, и могут быть описаны только в рамках квантовой электроди­намики на основе представлении о дискретности этих процессов.

Электромагнитные волны широко используются в радиосвязи, радиолокации, телевидении, медицине, биологии, физике, астрономии и др. областях науки и техники.

Радиочастоты и сверхвысокие частоты являются составной частью спектра электромагнитных излучений в частотном диапазоне от единиц Гц до 300 ГГц. Основными параметрами ЭМИ являются длина волны (λ) и частота (f), которая связана с длиной волны обратной зависимостью (для условий распространения волны в воздухе): f = с/ λ, где с - скорость света. Частоты колебаний ЭМИ измеряются в Герцах (Гц): 1 килогерц (кГц) = 103 Гц, 1 мегагерц (МГц)=106; Гц, 1 гигагерц (ГГц) = 109 Гц. Классификация РЧ и СВЧ приведена в табл. 1. На практике при оценке электромагнитной обстановки очень часто приходится учитывать отдельно или частоту колебаний, или длину волны.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1004; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.