Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке. Специализация и интеграция клеток многоклеточного организма




Клеточная теория, основные этапы ее развития. Значение клеточной теории в обосновании концепции единства живого. Современное состояние клеточной теории, значение ее для биологии и медицины.

Клеточная теория: все организмы состоят из одинаковых частей клеток; клетки растений и животных имеют общие принципы строения, т.к. возникли одинаковыми путями из бесструктурного вещества неживой природы; каждая отдельная клетка самостоятельна, а деятельность организма представляет сумму жизнедеятельности отдельных клеток.

Ошибки этой теории: автономность клеток, главная роль принадлежит оболочке, представление образования клеток.

Значение: показала морфологическое единство живого; подготовила почву для учения Дарвина, показавший, что развитие началось с клетки; поставила всю биологию на материалистическую основу.

Большое влияние на дальнейшие развитие клеточной теории оказал Р.Вирхов, разработав труд «Целлюлярная патология». В нем показал, что клетки возникли только путем размножения себе подобных. Остались ошибки: клетка как обособленное государство; не видел качественное различие между частью и целым; рассматривал организм не в его исторического развития и не в связи с внешней средой.

Современная трактовка КТ: клетка – элементарная структурно-функциональная единица и генетическая единица живого; клетка – единая система, включающая множество связанных друг с другом функциональных единиц (органоиды или органелла); клетки сходны (гомологичны) по строению и основными свойствами (гомологичность определяет сходство общеклеточных функций, направленных на поддержание жизни клетки и их размножение); клетка увеличивается в числе путем деления исходной, после удвоения ее генетического материала; многоклеточный организм – сложный ансамбль из множества клеток, объединенных и интегрированных а систему тканей и органов, связанных с механизмами регуляции; клетки многоклеточных организмов – тоти(поли)потентны, т.е. обладают генетическими потенциями всех клеток данного организма, но отличаются друг от друга различной экспрессией генов, что приводит к их функциональному разнообразию, т.е. дифференцировки.

Значение для медицины: механизм образования опухолей связан с выходом из под контроля не зрелых клеток и их делением; процессы регенерации – с делением клетки; нарушение избирательной проницаемости клеточной мембраны лежит в основе любой патологии; нарушение процессов жизнедеятельности клеток при наличии в ней паразитов; воздействие лекарственных препаратов сказывающихся на метаболизме клетки; использование стволовых клеток в трансплантологии.

7. Клетка – основная форма организации живой материи. Основные структурные компоненты эукариотической клетки: наружная мембрана, цитоплазма, ядро, органоиды, включения.

Существует 2 гипотезы появления эукариотических клеток: 1) инвагинационная (впячивание) – в предковой клетке прокариот появляется впячивание мембраны и образуются первичные органоиды; она объясняет появление двух мембранных структур (ядро, пластиды, митохондрии). 2) симбиотическая – клеткой-хозяином был прокариот анаэроб, который способен к амебовидному движению. Переход к анаэробному дыханию связан с проникновением аэробапрокариота в клетку-хозяина и существования в виде митохондрий. У растений появляются хлоропласты, где симбионтами послужили сине-зеленые водоросли. Основной довод в пользе этой гипотезы, в том, что митохондрии и хлоропласты им собственную ДНК. Генетический материал ядра мог образоваться из ДНК симбионтов прокариот, т.о. за 1 млрд л эволюции эукариот, появилось все многообразие живых организмов от простейших до человека.

Клетка эукариота включает 3 составные части: 1 ) поверхностный аппарат – включает 3 части: а) надмембранный компонент – не живой продукт жизнедеятельности клетки, отличается у разных царств (хитин, целлюлоза, гликокалекс); б) подмембранный – (кортикальный) включает фибриллярные структуры, микротрубочки микрофиламенты, которые способствуют поддержанию формы клетки. Функции: осуществляет передачу информации глубинным структурам клетки; способствует изменению конфигурации плазмолеммы. в) плазмолемма (ЦПМ) – способна к самозамыканию; пластичность, избирательная проницаемость. Функции: опорная, рецепторная, регуляторная, стабилизирующая, транспортная. Имеет 3 слоя: 2 белковых расположенных рыхло снаружи, 1 – внутри липиднобималекулярный.

2) цитоплазма состоит из: гиалоплазмы, органоидов, включений. Гиалоплазма – основное вещество цитоплазмы, заполняющее пространство между клеточными органеллами, внутренняя среда обеспечивает связь всех органоидов. 90% - вода, 10% - белки, аминокислоты, нуклеотиды, ионы и др. в-ва. Содержит множество белковых нитей – филоментов (пронизывают цитоплазму, образуя цитоскелет). Органоиды – постоянные компоненты клетки, расположенные в цитоплазме, имеют определенную структуру и выполняют определенные функции. По назначению делят на: общие (во всех клетках) и специальные (присуще небольшим группам клеток). По строению на: мембранные (рибосомы, микротрубочки, микрофиломенты) и немембраные (ЭПС, КГ, лизосомы). Включения – непостоянные компоненты, продукты жизнедеятельности клетки, неживые, не выполняющие активных функций, синтезируются в клетке, используются в процессе обмена.

3) ядро – наиважнейший компонент всех эукариотических клеток (кроме эритроцитов), иногда встречаются многоядерные. Оно необходимо для жизни клетки, основное свойство: большие компенсаторные способности и возможности. Функции: хранение и реализация генетической информации, центр управления обменом веществ, регулирует активность клетки.

8. Хромосомы – структурные компоненты ядра. Строение, состав, функции. Понятие о кариотипе. Правила хромосомных наборов.

Функции хромосом: обеспечивают хранение генетической информации, использование ее, регуляцию считывания, удвоение (самокопирование), передачу генетического материала от материнской клетки к дочерней.

Химическая организация хромосом: состоят в основном из ДНК и белка, нуклеопротеидные фибриллы. Белки составляют 65% массы хромосомы, разделяются на гистоны и негистоны (они соединены с молекулами ДНК, чем препятствуют считывают генетическую информацию – это их регуляторная роль).

Выделяют несколько уровней спирализации или компактизации хроматид: 1 – нуклеосомная нить, 8 нуклеосомных гистонов, образующих белковые тела. на которые спирально накручивается молекула ДНК длиной ок. 200 пар нуклеотидов вместе с белковыми телами составляют нуклеосому. Благодаря такой организации в основе структуры хроматина лежит нить представляющую цепочку нуклеосом со свободными от белков участками ДНК. 2 – хроматиновая фибрилла – дальнейшая компактизация нуклеосомных нитей, обеспечивается гистоном Н1, который сближает белковые тела (коры), в результате образуется компактная структура, хроматин активен. 3 – интерфазаная хромонема. петлистая структура – хроматиновые фибриллы укладывают в петли, при участии негистоновых белков, хроматин не равномерно активен, участки эу- и гетеро-хроматина. 4 – разетковидная структура – формирование хромомеры, более компактная укладка петель и переход к метофазной хромосоме, полная иноактивация.

Кариотип – совокупность признаков хромосомного набора.

Правила хромосомных наборов: 1) правило постоянного числа, формы, размера хромосом (генетический критерий вид). Число хромосом не свидетельствует об уровне организации. 2) парность хромосом – в нормальном кариотипе всегда четное число хромосом; парные хромосомы – гомологичны. 3) индивидуальность хромосом – каждая пара характеризуется своими особенностями. 4)непрерывность хромосом – при делении клетки хромосомы автопродуцируются, каждой дочерней хромосоме. Непрерывность связана с редуплекацией ДНК.

Клетка является основной единицей биологической активности. Она способна к самовоспроизведению в среде, не содержащей других живых систем. Эта наименьшая по объему структура, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях поддерживать эти свойства в самой себе, а также передавать их в ряду поколений.

Благодаря наличию потока информации клетка создает организацию, соответствующую критериям живого, сохраняет и поддерживает эту организацию во времени, не смотря на меняющиеся условия внешней среды, передает ее в ряду поколений. В потоке информации участвует ядро, макромолекулы, переносящие информацию в цитоплазму, цитоплазматический аппарат транскрипции. На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру и используются в качестве катализаторов или структурных белков. Кроме ядерного генома, основного по объему заключенной информации, в эукариотических клетках функционируют также геномы митохондрий.

Поток энергии у представителей разных групп организмов представлен внутриклеточными механизмами энергообеспечения – брожением, фото- или хемосинтезом, дыханием. Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот и использования выделяемой энергии для синтеза высококалорийного клеточного «топлива» в виде АТФ. Особенностью потока энергии растительной клетки служит фотосинтез – механизм преобразования энергии солнечного света в энергию химических связей органических веществ.

Поток вещества – реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими служат многие продукты расщепления пищеварительных веществ. Особая роль в этом принадлежит центральному звену дыхательного обмена – циклу Кребса, осуществляемому в митохондриях. Через этот цикл проходит путь углеродных атомов большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки, а также переключение метаболизма клетки с одного преобладающего пути ну другой, например, с углеводного на жировой. Т.о., дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и синтеза углеводов, белков, жиров, нуклеиновых кислот.

Потоки информации, энергии и веществ осуществляются непрерывно и составляют необходимое условие существования клетки как живой системы.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1779; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.