Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Посттрансляционные процессы. 5 страница




Основой регенерации являются мо-лекулярно-генетические и внутрикле­точные механизмы: редупликация ДНК, синтез белка, накопление АТФ, митоз. Изучение процесса регенера­ции привело к установлению факта, что регенерирующие ткани в известной степени приближаются к эмбриональ­ным. В обоих случаях клетки мало­дифференцированы, имеется и био­химическое сходство. Эти изменения клеток регенерата в сторону, близкую к эмбриональным, можно объяснить следующим образом. Каждая сомати­ческая клетка имеет полный набор генов. В дифференцированных клет­ках разных тканей активны определен­ные гены, программирующие синтез специфических белков, все остальные гены репрессированны, неактивны. При регенерации прекращается синтез специ­фических белков (дедифференцировка). По-видимому, это связано с тем, что происходит активизация тех генов, ко­торые были активны в эмбриональном периоде.

(39) Понятие о гемостазе. Одно из основных свойств всего жи­вого — способность сохранять отно­сительное динамическое постоянство внутренней среды. Это свойство полу­чило название гомеостазп (гр. homoios — равный, stasis — состояние). Го­меостаз выражается в относительном постоянстве химического состава, ос­мотического давления, устойчивости ос­новных физиологических функций в организмах растений, животных,, че­ловека. Гомеостаз каждого индивиду­ума специфичен и обусловлен его ге­нотипом.

Регуляторные гомеостатические ме­ханизмы функционируют на клеточном, органном, организменном и над-организменном уровнях.

Таким образом, понятие гомеостаза не связано со стабильно­стью процессов. В ответ на действие внешних факторов происходит неко­торое изменение физиологических по­казателей, а включение регуляторных систем обеспечивает поддержание от­носительного постоянства внутренней среды. Способность к поддержанию постоянства внутренней среды пред­ставляет собой свойство, выработав­шееся в процессе эволюции и наслед­ственно закрепленное.

Основные компоненты гомеостаза. Клеточный и молекулярно-генетический уровни. Клетка является сложной биологической системой, которой присуща саморегуляция. Установление гомеостаза клеточной среды обеспе­чивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из нее. В клетке непрерывно идут процессы изменения и восстановления органоидов. Это про­исходит и в обычных условиях среды, но особенно интенсивно при дгйствии различных повреждающих факторов (изменение температуры, гипоксия, не­достаток питательных веществ).

В основе реакций, осуществляемых в клетке на ультраструктурном уровне, лежат генетические механизмы гомео­стаза.

Важнейшее свойство живого — самовоспроизведение — основано на про­цессе редупликации ДНК. Сам меха­низм этого процесса, при котором новая нить ДНК строится строго компле­ментарно около каждой из составляю­щих молекул двух старых нитей, яв­ляется оптимальным для точной пере­дачи информации. Точность этого про­цесса очень высока, но все же, хотя и очень редко, происходят ошибки при редупликации. Нарушение структуры молекулы ДНК может происходить и в ее пепвмчных цепях вне связи с редупликацией под воздействием эндо­генных и экзогенных химических со­единений, под влиянием физических факторов. В большинстве случаев про­исходит восстановление генома клетки, исправление повреждения посредством системы репарирующих ферментов. Ре­парация играет важнейшую роль в восстановлении структуры генетиче­ского материала и сохранении нор­мальной жизнеспособности клетки. При повреждении механизмов репарации происходит нарушение гомеостаза как на клеточном, так и на органиэменном уровнях.

Важным механизмом сохранения го­меостаза является диплоидное состоя­ние соматических клеток у эукариот. Диплоидные клетки отличаются боль­шей стабильностью функционирования, так как наличие у них двух генетиче­ских программ повышает надежность генотипа. Большинство мутаций, ока­зывающих часто неблагоприятное дей­ствие, являются рецессивными. Нали­чие у гетерозиготной особи доминант­ного ал деля обеспечивает либо пол­ное, либо частичное подавление в фе­нотипе рецессивной мутации. Стабили­зация сложной системы генотипа обес­печивается и явлениями полимерии, а также другими видами взаимодей­ствия генов. Большую роль в процес­сах гомеостаза играют регуляторные гены, контролирующие активность оперонов.

У прокариот, имеющих более при­митивную организацию генотипа, на­блюдается меньшая автономность ор­ганизмов от колебания внешней среды и более низкая стабильность самого генетического аппарата.

Общие закономерности гомеостаза. Способность сохранять гомеостаз — одно из важнейших свойств живой си­стемы, находящейся в состоянии дина­мического равновесия с условиями внешней среды. Способность к поддер­жанию гомеостаза неодинакова у раз­личных видов. По мере усложнения организмов эта способность прогрес­сирует, делая их в большей степени не­зависимыми от колебаний внешних ус­ловий. Особенно это проявляется у выс­ших животных и человека, имеющих сложные нервные, эндокринные и им­мунные механизмы регуляции. Влия­ние среды на организм человека в ос­новном является не прямым, а опосре­дованным, благодаря созданию им искусственной среды, успехам техники и цивилизации.

Молекулярно-генетический уровень гомеостаза обеспечивается процессами редупликации ДНК, репарации. На­дежность генетического аппарата эука-риот обусловлена наличием двух гено­мов в каждой соматической клетке.

На уровне клетки происходит восста­новление ее мембран, компенсаторное увеличение ряда органоидов при необ­ходимости повышения функции (уве­личение количества митохондрий, ри­босом).

Контроль за генетическим постоян­ством осуществляется иммунной систе­мой. Эта система состоит из анатомиче­ски разобщенных органов, представля­ющих функциональное единство. Свой­ство иммунной защиты достигло высше­го развития у птиц и млекопитающих.

В системных механизмах гомеостаза действует кибернетический принцип от­рицательной обратной связи: при лю­бом возмущающем воздействии происхо­дит включение нервных и эндокринных механизмов, которые тесно взаимосвя­заны. Нормализация физиологических показателей осуществляется на основе свойства раздражимости. У более вы­соко организованных животных это ус­ложняется, дополняется сложными по­веденческими реакциями, включаю­щими инстинкты, условно-рефлектор­ную и элементарную рассудочную де­ятельность, а у человека абстрактное мышление — качественно новое явле­ние, положившее начало социальной эволюции, где действуют другие за­коны.

(40) Трансплантация. Ауто-, алло- и ксенотрансплантация. Трансплантацией (лат. transplantatio — пе­ресадка) называется пересадка или приживление органов и тканей. Пере­саживаемый участок органа называется трансплантатом. Организм, от которо­го берут ткань для пересадки, является донором; организм, которому переса­живают трансплантат,— реципиентом.

Различают аутотрансплантацию, когда пересадка осуществляется на другую часть тела того же организма, аллотрансплантацию, когда произ­водят пересадку от одной особи другой, принадлежащей тому же виду, и ксе-нотрансплантацию, когда донор и ре­ципиент относятся к разным видам.

Огромный экспериментальный и кли­нический материал показал, что успех трансплантации зависит от иммуноло­гических реакций организма. Ауто-трансплантации происходят наиболее успешно, так как белки (антигены) трансплантата не отличаются от белков реципиента. Иммунологическая реак­ция не возникает, и возможно истин­ное приживление. При аллотрансплан-тациях донор и реципиент, как пра­вило, различаются по антигенам. В опытах на гидрах и червях аллотрансплантации удаются, так как иммуноло­гические реакции у них выражены слабо. Однако у высших животных и человека обычно не наблюдается дли­тельное приживление аллотрансплантатов. Исключение составляют одно­яйцовые близнецы, генотип которых, а следовательно, и белковый состав одинаковы. Ксенотрансплантация уда­ется у некоторых беспозвоночных, но у высших животных трансплантаты от особей других видов рассасывают­ся.

Трансплантация в медицинской практике. В тех случаях, когда орган не может регенерировать, но он необхо­дим, остается один метод — заменить его таким же естественным или искус­ственным органом.

При пластических операциях, про­водимых с целью восстановления фор­мы и функции какого-либо органа или деформированной поверхности тела, распространена пересадка кожи, хря­ща, мышц, сухожилий, кровеносных сосудов, нервов, сальника.

Значительную часть пластических операций составляют косметические, направленные на восстановление де­формированных частей лица. При пластических операциях поль­зуются преимущественно аутотрансплантацией.

Пересадка роговицы проходит без ос­ложнений, которые сопровождают пе­ресадку других органов, так как рого­вица не содержит кровеносных капил­ляров и, следовательно, в нее не по­падают клетки иммунной системы крови.

Проблема тканевой несовместимос­ти. Успехи трансплантологии. По­скольку абсолютно точно подобрать до­нора и реципиента по всем антигенгм невозможно, возникает проблема подав­ления иммунной реакции отторжения. Большое значение в этом имеет явле­ние иммунологической толерантности (лат. tolerantia — терпимость) к чу­жеродным клеткам. Это явление было открыто на разных организмах неза­висимо друг от друга чешским эмбрио­логом М. Гашеком (1953) и английским зоологом П. Медаваром (1953). М. Га­шек произвел опыт по эмбрионально­му парабиозу у двух цыплят, разли­чающихся по антигенам. В результате у обеих птиц выработалась толерантность: при последующем введении им эритроцитов друг от друга не проис­ходило выработки антител, не оттор­гались и пересаженные от партнера кожные трансплантаты.

Иммунная система, направленная против любых генетически чужеродных веществ и клеток, защищает организм от микробов и вирусов. Однако это свойство, выработанное в процессе дли­тельной эволюции, обращается против интересов человека в случае пересадки органов и тканей. В этом случае, а также при аутоиммунных заболевани­ях, перед учеными встала задача по­давления иммунитета — иммунодепрес-сии. Это достигается различными спо­собами: подавлением активности им­мунной системы, облучением, введением специальной антилимфатической сыворотки, гормонов коры надпочеч­ников.

Применяют также различные хими­ческие препараты — антидепрессанты (имуран). Уже при первой операции сердца пациенту было назначено облу­чение и сильнодействующие химиче­ские и гормональные препараты для предотвращения отторжения сердца. Иммунитет удалось подавить; сердце не отторгалось, но одновременно был подавлен не только трансплантацион­ный иммунитет, но и тот, который за­щищает организм от микробов, и боль­ной погиб от воспаления легких.

Искусственные органы. Транс­плантация не может полностью ре­шить проблему замены нефункциони-' рующих или утраченных органов че­ловека.

В последние десятилетия стало раз­виваться новое направление в замес­тительной хирургии — применение искусственных органов. Это техниче­ские устройства, предназначенные для временной или постоянной замены функции того или иного органа челове­ка. Примером имплантируемых орга­нов могут служить искусственные кла­паны сердца, которыми заменяют по­раженные; применяют трансплантацию протезов крупных сосудов, сделанных из тефлона или других синтетиче­ских материалов.

Жизнь многих людей с тяжелыми нарушениями ритмической деятель­ности сердца удается спасти, импланти­руя миниатюрные электрокардиостимуляторы. Созданы протезы некото­рых суставов, действующий от биото­ков пациента протез руки. Сделана первая попытка замены сердца че­ловека искусственным; хотя сам аппа­рат находится в теле человека на месте сердца, но источник его энергоснаб­жения — довольно массивная кон­струкция — находится вне тела чело­века, с которым соединяется специ­альными приводами. Проблема пол­ностью имплантированного (включая источник энергии) сердца требует еще большой исследовательской работы и новых технических решений

(41) Биологические ритмы. В эволюции выработалась способность организмов ориентиро­ваться во времени, которая позволяет согласовывать скорость и нап­равление главных физиологических процессов с закономерными и прежде всего циклическими изменениями условий обитания. Меха­низмы, лежащие в основе указанной способности, объединяют под общим термином «биологические часы». Внешним проявле­нием функционирования таких часов служат ритмические колебания функций организма — биологические ритмы. Область био­логии, изучающая закономерности временной организации живых систем, называется хронобиологией.

Циклические изменения характеризуют различные процессы на клеточном, тканевом, органном и организменном структурных уров­нях. Так, с определенной периодичностью изменяется содержание гликогена в клетках печени, количество клеток, редуплицирующих ДНК или делящихся митозом, происходит вылет имаго из куколок у плодовых мух или свечение одноклеточной водоросли Оопуаи1ах, обусловливающее свечение морской воды. Многочисленны примеры таких изменений у растений: поднимание и опускание листьев или движение лепестков в зависимости от времени суток, опорожнение спор из спорангиев у грибов и водорослей.

Биологические ритмы различаются продолжительностью цикла. Околочасовые ритмы характеризуют временную организа­цию некоторых внутриклеточных метаболических процессов, например синтез и выделение белкового секрета клетками некоторых желез. Их изучение начато сравнительно недавно. Изменения растений и животных в связи со сменой времен года, издавна привлекавшие внимание людей, являются примером ритмов с годовой периодичностью.

Интенсивно изучаются суточные (циркадные)ритмы, которые заключаются в закономерных изменениях физиологических показателей организма в зависимости от времени суток.

Суточные ритмы многих физиологических процессов являются эндогенными, т. е. определяются механизмами, действующими в самом организме. В пользу этого говорит, например, сохранение ритма, зависящего от фотопериодичности, даже после помещения организма в условия постоянного освещения. Так, мыши, существуя в течение нескольких поколений при постоянном освещении, по возвращении в условия чередования света и темноты, воспроизводили нормальную суточную периодичность двигательной активности.

Суточные ритмы реагируют на действие внешних факторов, прежде всего чередование света и темноты, высоких и низких температур. При этом изменяется положение фаз ритмических изменений. У челове­ка, например, при переходе к образу жизни, противоположному обычному (бодрствование ночью, сон днем), через 9—10 сут наблюда­ется смена фаз ритма колебаний температуры тела. Внешние факторы способствуют выявлению эндогенных суточных ритмов путем синхро­низации ритмических изменений отдельных клеток или особей. Например, в популяциях плодовых мух, выдерживаемых в постоянных условиях освещения, регистрируется непериодический вылет имаго из куколок. После воздействия светом благодаря синхронизации процесс становится периодическим. Таким образом, внешние факторы могут служить указателем времени.

Средняя длина периодов суточных ритмов у растений варьирует от 22 до 28 ч, у животных в большинстве случаев этот показатель уклады­вается в пределы 23—25 ч. Существуют определенные индивидуальные колебания длины периодов. При постоянных условиях длительность цикла активности у четырех мышей составила в одном из опытов от 25,0 до 25,4 ч.

Эндогенные суточные ритмы ограничивают осуществление тех или

иных функций определенным временем суток. Это имеет большое приспособительное значение, так как приводит организм в состояние «готовности» по отношению к ожидаемым условиям среды в опреде­ленное время. Так, вечерние прыжки лососей, требующие соответству­ющего энергетического подкрепления, совпадают с максимумом активности поедаемых насекомых. Благодаря эндогенному ритму организмы сохраняют экологически целесообразную ориентировку во времени суток, несмотря на периодическое выключение внешних указателей времени, например в связи с непогодой.

Хронобиология представляет собой интенсивно развивающуюся область науки, однако до сих пор нет отчетливого понимания механизма биологических часов или способов сопряжения эндогенных ритмов и циклических изменений внешних факторов. Между тем познание указанного механизма имеет большое значение, например для выбора оптимального режима активности человека. Так, ночная работа в режиме «12-часовая смена, 24-часовой отдых» менее благоприятна, чем многонедельная ночная работа, укладывающаяся в суточный ритм. Данные о суточном ритме клеточной пролиферации используются при выборе времени назначения лекарств, действующих на делящиеся клетки, например в онкологических клиниках.

(42) Жизнь тканей и органов вне организма. Культурой тканей называется метод, дающий возможность выращи­вать вне организма кусочки тканей и да­же отдельные клетки. На теоретическую возможность такого метода указал А. Е. Голубев еще в 1874 г., а применил его впервые И. П. Скворцов в 1885 г. Ме­тоды культуры тканей были усовер­шенствованы американскими биоло­гами Г. Гаррисоном в 1907 г. и Д. Кар-релем в 1910 г. и нашли широкое рас­пространение в лабораториях многих стран.

Для культуры тканей небольшие ку­сочки органов или суспензию клеток в строго стерильных условиях выде­ляют, из организма, помещают в стек­лянные камеры на специально приго­товленные стерильные питательные среды и создают необходимый темпе­ратурный режим. После некоторого пе­риода покоя клетки в культуре начи­нают интенсивно размножаться. Пи­тательный материал для роста ткань получает из среды; в нее же поступают продукты жизнедеятельности. Накоп­ление их приводит культуру к старе­нию. Образующиеся клетки становят­ся мельче. Если своевременно не сде­лать пересев (пассаж) в свежую среду, ткань погибает.

Интенсивность роста клеток в куль­туре тканей очень велика.

Культуры тканей используют в на­учных исследованиях для выяснения многих вопросов теоретической и прак­тической биологии и медицины. Так, с помощью культуры тканей были де­тально изучены все стадии митоза. Этот метод был применен также для изучения дифференцировки клеток во время эмбрионального развития орга­нов млекопитающих и птиц. Культуры тканей используют для решения мно­гих вопросов цитологии, гистологии, эмбриологии, физиологии, онкологии, генетики.

Клеточные культуры широко при­меняют для изучения действия раз­личных повреждающих факторов на генетический аппарат клеток, для ис­следования ферментных систем клетки.

Клеточные культуры используют для производства некоторых биологически активных препаратов: ферментов, ан­тител. Так можно размножать вирусы гриппа, полиомиелита, клещевого эн­цефалита, что необходимо для получе­ния профилактических сывороток. Большое практическое значение имеет культивирование клеток костного мозга.

Клиническая и биологическая смерть. У высших многоклеточных ор­ганизмов смерть — не одномоментное событие. В этом процессе различают два этапа — клинической и биологиче­ской смерти. Признаком клинической смерти служит прекращение важней­ших жизненных функций: потеря со­знания, отсутствие сердцебиения и ды­хания. Однако в это время большинство клеток и органов еще остаются живы­ми, в них еще совершаются процессы самообновления, их метаболизм еще упорядочен. Лишь постепенно насту­пает биологическая смерть, связанная с прекращением самообновления, хими­ческие процессы становятся неупоря­доченными, в клетках происходит аутолиз (самопереваривание) и разло­жение. Эти процессы происходят в раз­личных органах с неодинаковой ско­ростью, которая определяется степе­нью чувствительности тканей к нару­шению снабжения их кислородом. Нервные клетки коры мозга являются наиболее чувствительными, в них не­кротические изменения происходят уже через 5—6 мин, при более длительном прекращении дыхания и кровообра­щения наступают необратимые изме­нения в клетках коры

большого мозга. Некоторым больным после этого уда­ется восстановить сердечную деятель­ность, дыхание и другие функции, но сознание не восстанавливается. С це­лью удлинения периода клинической смерти используют обшее. охлаждение организма. Гипотермия, замедляя об­менные процессы, обеспечивает боль­шую устойчивость к кислородному го­лоданию.

Так, при снижении температуры те­ла до 24—26° срок клинической смерти у собак удлиняется до 1 ч, а у обезьян до 30 мин. В эксперименте возможно и более глубокое и длительное охла­ждение.

Реанимация. Изучение процес­са умирания организма привело к за­ключению, что между жизнью и смер­тью существует переходное состояние — клиническая смерть, когда признаки жизни уже не наблюдаются, но ткани еще живы. Следовательно, в это время еще есть возможность возвратить ор­ганизм к жизни.

Разумеется, вернуть к жизни из состояния клинической смерти можно лишь тогда, когда не повреждены жиз­ненно важные органы. Оживление воз­можно при наступлении смерти от кровопотери, поражения электрическим то­ком, утопления и других причин, не связанных с повреждением жизненно важных органов. В случае смерти от рака, далеко зашедшего туберкулеза, повреждений сердца и т. д. период клинической смерти также имеется, поэтому теоретически оживление воз­можно, но организм уже настолько раз­рушен заболеванием, что не будет жизнеспособным. Как показывают ра­боты по оживлению, оно возможно у человека лишь в тех случаях, когда с момента начала клинической смерти прошло не более 6—7 мин. После это­го начинаются уже необратимые про­цессы в коре большого мозга.

Успехи хирургии, особенно грудной и, в частности, операций на сердце, в большой мере связаны с широким внедрением принципов реанимации в клинику. Операции, на которые до середины XX в. хирург решался редко в силу частой смерти больных, нашли широкое распространение. Методы реа­нимации применяются не только в хи­рургической практике, но и при раз­личных угрожающих состояниях в любой области практической меди­цины.

(43) Раздражимость. Это способность живых клеток, систем и целого организма изменять свою активность под влиянием внешних воздействий. В нервах и мышцах раздражимость служит предпосылкой для возникновения возбуждения.

Анаболизм. Происходит биосинтез сложных в-в из более простых мол.-предшественников. При этом каждая клетка синтезирует характерные для нее белки, жиры, УВ и др.соед. синтез белков, протоплазмы и клеточных структур относят к пластическому обмену, связанному с построением клеток и внутриклеточных образований.

(44) История становления эволюционной идеи. Идея развития является одним из важнейших элементов современного научного диалектико-материалистиче-ского подхода к изучению окружающе­го нас мира.

В области биологических наук идея развития нашла наиболее полное вопло­щение в эволюционной теории Ч.Дар­вина. Однако теория Дарвина, пред­ставившая убедительные доказатель­ства исторического развития живых ор­ганизмов и впервые объяснившая движущие силы и пути эволюции, явилась завершением длительного процесса становления эволюционных воззрений, ис­токи которого восходят к древним культурам Запада и Востока.

На всех этапах своей истории биоло­гия, как и другие области человече­ских знаний, являлась ареной борьбы материализма и идеализма, диалектики и метафизики.

Идеям об изменяемости живых су­ществ, о развитии живого противостоя­ло господствовавшее много веков и всегда поддерживаемое церковью пред­ставление о возникновении живого в ре­зультате акта творения, о постоянстве и неизменности всего существующего. Эта концепция вошла в историю под. названием креационизма (лат. creatio— создаю, творю).

В борьбе с креационизмом идеи раз­вития прошли долгий и трудный путь от первоначального признания самой возможности изменений, превращений (трансформации) до полного отрицания теорий творения и неизменности живо­го, до понимания развития как истори­ческого процесса.

Наиболее ранние воззрения, допус­кающие изменяемость живого, получи­ли название трансформизма (лат. transformatio — изменяю, преобразовы­ваю). Трансформизм еще не связывал наблюдаемые в органическом мире из­менения с поступательным характером развития и происхождением высших, более сложно организованных форм от низших, более примитивных. В тео­риях трансформистов (Ж. Бюффона и др.) идея развития еще не воспринима­ется как исторический процесс. Для эволюционных теорий, эволюционизма (лат. evolutio — развертываю) харак­терно признание исторического разви­тия живого.

Первая эволюционная теория была создана Ж. Б. Ламарком в 1809 г. Од­нако Ламарк ошибочно полагал, что для эволюции достаточно одного прямо­го влияния среды, упражнения и неупражнения органов, приводящих к адекватной изменчивости. Он верил, что высшие животные могут изменять­ся также под влиянием внутренней тенденции к совершенствованию. Ла­марк допускал наследование приобре­тенных признаков и считал, что это приводит к эволюции.

Эволюционная теория Ламарка была ошибочной. В его время наука еще не располагала достаточным количеством фактов для обоснования эволюционной идеи. Для полного торжества учения об эволюции потребовалось еще 50 лет накопления научных фактов.

Сущность представления Ч.Дарвина о механизме органической эволюции. Дарвин нашел доказательства эво­люции, обратившись к сельскохозяй­ственной практике. Именно на приме­ре культурных растений и домашних животных он показал значительную пластичность организмов, обратил вни­мание на многочисленность сортов культурных растений и пород одомаш­ненных животных. Сторонники посто­янства видов вынуждены были утверж­дать, что каждый сорт и порода имеют особого дикого предка. Дарвин пока­зал, что все многообразие пород и сор­тов выведено человеком от одного или небольшого числа диких предков.

Веским доказательством этого яви­лось то, что все без исключения сорта и породы служат для удовлетворения каких-либо определенных потребно­стей человека — экономических или эс­тетических. Другое доказательство со­стоит в том, что породы и сорта отли­чаются друг от друга в первую очередь особенностями, которые интересуют че­ловека. У различных сортов свеклы листья, плоды и семена весьма сходны, корнеплоды же разнообразны по фор­ме, цвету, содержанию сахара и т.д. То же относится к моркови, редису и другим корнеплодам. У капусты боль­шое разнообразие представляют лис­тья, у сирени — цветы, у фасоли — семена и т. д.

Анализируя методы работы селекцио­неров, Дарвин пришел к заключению, что создание новых сортов и пород зиждется на использовании человеком трех факторов: изменчивости, наслед­ственности и отбора. Убедившись в этом, он показал далее, что в природе те же факторы, т. е. наследственная из­менчивость и отбор, обусловливают формирование видов, эволюцию орга­нического мира и объясняют целесооб­разность строения и функций животных и растений.

Отбор, применяемый человеком, Дар­вин назвал искусственным, понимая под ним процесс создания новых пород животных и сортов культурных расте­ний путем систематического сохранечия особей с определенными, ценными для человека, признаками и свойст­вами в ряде поколений и путем содейст­вия их размножению. Эта цель дости­гается не только выбором лучших, но и устранением (элиминацией) менее соответствующих поставленной зада­че. При этом задача ставится не обяза­тельно сознательно. С древнейших вре­мен человек, даже не преследуя цели улучшения разводимых животных и растений, все же стремился сохра­нить для размножения экономически более выгодных, а в пищу использовал в первую очередь менее ценных.

В природе Дарвин открыл естествен­ный отбор. В противоположность ис­кусственному, когда накапливаются признаки, полезные для человека, в процессе естественного отбора накап­ливаются признаки, полезные для дан­ного организма или для вида, к кото­рому он относится. В процессе эволю­ции естественный отбор делает орга­низмы все более приспособленными -к тем условиям, в которых обитают особи данного вида.

Материал для отбора наиболее при­способленных («лучших») всегда есть, так как организмам свойственно ин­тенсивное размножение в геометриче­ской прогрессии. В окружающей при­роде организмы вступают в многооб­разные, весьма сложные взаимоотно­шения, в которых могут выжить дале­ко не все. Совокупность этих взаимоот­ношений Дарвин назвал борьбой за су­ществование.

Дарвин различал три формы борьбы за существование: взаимоотношения ор­ганизмов с неживой природой; межви­довую борьбу, к которой относятся взаимоотношения между особями, при­надлежащими к разным видам; внут­ривидовую борьбу, включающую вза­имоотношения между особями одного вида.

Наконец, особи, относящиеся к од­ному виду, имеют совершенно одина­ковые потребности и подвергаются од­ним и тем же опасностям, поэтому борь­ба между ними становится наиболее напряженной. Эти внутривидовые от­ношения, по Дарвину, приводят к ди­вергенции, т. е. служат постоянным- ис­точником обособления групп особей внутри вида. Внутривидовую борьбу Дарвин считал основным фактором эволюции.

Итак, естественный отбор, откры­тый Дарвиным,— это исторический процесс, благодаря которому в резуль­тате борьбы за существование выжи­вают и успешно размножаются, остав­ляют потомство организмы с призна­ками, полезными для их жизни, т. е. обеспечивающими существование вида. В то же время организмы с менее полез­ными и тем более вредными в данных условиях обитания признаками и свой­ствами погибают, не оставляя потом­ства. Естественный отбор —движущий фактор эволюции, приводящий к фор­мированию новых видов.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 432; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.