КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Векторные рисунки иногда не печатаются или выглядят на бумаге не так, как хотелось бы
Векторные изображения могут быть легко преобразованы без потери качества. Векторная графика не позволяет получать изображения фотографического качества. Векторное изображение описывается в виде последовательности команд. Растровые рисунки могут быть легко напечатаны на принтерах. При масштабировании и вращении растровых картинок возникают искажения. Растровые рисунки эффективно используются для представления реальных образов. Растровое изображение строится из множества пикселей. Особенности печати изображения Качество редактирования изображения Представление объектов реального мира Способ представления изображения Критерий сравнения Растровая графика: Векторная графика: №6 В компьютерной графике с понятием разрешение изображения обычно происходит больше всего путаницы, поскольку приходится иметь дело сразу с несколькими свойствами разных объектов. Следует четко различать: разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны, пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске. Разрешение экрана — это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселах и определяет размер изображения, которое может поместиться на экране целиком. Разрешение принтера — это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Разрешение измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере. Разрешение изображения — это свойство самого изображения. Разрешение измеряется в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения — его физическим размером. Физический размер изображения может измеряться как в пикселах, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом. Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселах, чтобы знать, какую часть экрана оно занимает. Цветовая глубина (также называемая битовой глубиной) относится к числу цветов, которые содержатся в образе, сгенерированном компьютером. Природе нет дела до количества доступных цветов, но с компьютерами дело обстоит не так. Компьютеры должны конвертировать информацию любого типа в числовые последовательности, поэтому естественно, что они должны оцифровывать и запоминать цвета. В компьютерном рисовании используется несколько битовых глубин, в том числе 8 разрядная настраиваемая палитра, 15- и 16-разрядные фиксированные палитры, 24- и 64-разрядные цветовые глубины. Чем больше разрядов, тем больше цветов. Реальная математика каждой цветовой глубины мало интересна для среднего пользователя. Ему важно знать количество цветов, доступных при каждой цветовой глубине, а также ее сильные и слабые стороны. Глава 2, "Смешивание цвета и света" содержит исчерпывающую дискуссию по поводу каждой битовой глубины. 8-разрядная настраиваемая палитра. Образы содержат только 256 цветов из всего спектра. Точные цвета могут различаться между разными образами, поскольку палитра настраивается на образ посредством базиса образа. Малое количество цветов недостаточно для реалистического отображения всего спектра цветов, но легко/эагружается, отображается и имеет малый размер файла. 15- и 16-разрядные фиксированные палитры. Образы содержат соответственно 32768 и 65536 цветов. Данные битовые глубины менее распространены по сравнению с 8-разрядной и 24-разрядной битовыми глубинами, однако представляют собой хороший компромисс между большим размером файла и цветовым реализмом. Фиксированная палитра также гарантирует, что многочисленные образы в 15-или 16-разрядных цветах не будут конфликтовать в используемых цветах - это полезно в играх и мультимедиа - продукции. 24-разрядный цвет. Наиболее широко распространенная палитра для реальных образов. Количество цветов в 16.7 миллионов вполне достаточно для правдоподобного отображения любого образа, видимого невооруженным глазом. Анимация, предназначенная для фильма или видео, практически всегда визуализируется в 24-разрядном цвете. Однако игры и другие базовые компьютерные графические работы применяют 24-разрядный цвет реже из-за большого размера файла и медленного отображения. 64-разрядный цвет. Подобные образы достаточно редки, хотя данная цветовая глубина важна для пользователей 3D Studio MAX, поскольку внутренне 3D Studio MAX визуализирует образы в 64-разрядном цвете, а затем разреживает его в меньшие цветовые глубины. №7 Цвет чрезвычайно важен в компьютерной графике как средство усиления зрительного впечатления и повышение информационной насыщенности изображения. Ощущение цвета формируется человеческим мозгом в результате анализа светового потока, попадающего на сетчатку глаза от излучающих или отражающих объектов. Считается, что цветовые рецепторы подразделяются на три группы, каждая из которых воспринимает только один единственный цвет - красный, зелений или синий.В излучающих объектах световое излучение суммируется, поэтому для излучающих объектов характено аддитивное цветовоспроизведение. Для отражающих объектов - субтрактивное цветовоспроизведение (световые излучения вычитаются). Примером объета первого типа является электронно-лучевая трубка монитора, второго типа-полиграфический отпечаток.
Дата добавления: 2015-04-24; Просмотров: 1327; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |