Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Почему зависимости для определения коэффициента теплоотдачи представляются в безразмерной форме




Приведенные значения можно использовать и для оценочных расчетов.

В общем случае зависит:

1) от форм поверхности, его размеров и ориентации в потоке жидкости.

2) от физических свойств жидкости

3) от температуры и скорости жидкости

4) от режима движения жидкости

5) от природы возникновения движения жидкости (свободной и вынужденной конвекции)

6) от направления теплового потока, т.е. от того нагревается или охлаждается жидкость в процессе теплообмена.

7) от шероховатости поверхности и др. факторов.

Диапазоны изменения коэффициентов теплоотдачи: Вт/м2К

 

Основная трудность, возникающая при экспериментальном исследовании конвективного теплообмена, заключается в том, что коэффициент теплоотдачи зависит от многих параметров. Например, средний по поверхности коэффициент теплоотдачи от продольно омываемой пластины зависит от длины пластины l, скорости набегающего потока wж и теплофизических параметров жидкости:

Если проводить эксперименты, изменяя т раз каждый из шести параметров, влияющих на теплообмен, то суммарное число экспериментов будет N = m6, т. е. порядка 106.

Теория показывает, что число параметров зависит от выбора единиц измерения. Наименьшее число параметров получится, если единицы измерения будут связаны с самой решаемой задачей. Так, в качестве единицы длины можно принять не метр, а длину пластины l. Для перевода всех параметров в «новую» систему единиц измерения поделим их на l в той же степени, в которой длина входит в их размерность:

Число параметров в правой части уравнения уменьшилось, так как l/l=1, т. е. мы избавились от того параметра, который приняли за единицу измерения. Если теперь ввести еще три «новых» единицы измерения: для времени l2/v, для массы l3 и, наконец, для отношения тепловой мощности к перепаду температур l (в рассматриваемой системе величин единицы Вт и К раздельно не встречаются, а входят лишь в комбинации Вт/К), то в правой части рассматриваемой зависимости останется всего два безразмерных параметра:

Такие же безразмерные параметры получаются и при анализе теплоотдачи от поверхности трубы, но определяющим размером в них будет не длина l, а диаметр d, соответственно внутренней — при течении жидкости внутри трубы и наружный — при наружном обтекании одной трубы или пучка труб.

Согласно основной теореме метода анализа размерностей (л-теореме) зависимость между N размерными величинами, определяющими данный процесс, может быть представлена в виде зависимости между составленными из них N — К безразмерными величинами, где К — число первичных переменных с независимыми размерностями, которые не могут быть получены друг из друга. В уравнении общее число переменных (включая и ) равно 7, из них четыре первичных (их мы принимали за единицы измерения) соответственно безразмерных чисел в уравнении N-K=7-4=3

Каждый из безразмерных параметров имеет определенный физический смысл. Их принято обозначать первыми буквами фамилий ученых, внесших существенный вклад в изучение процессов теплопереноса и гидродинамики, и называть в честь этих ученых.


представляет собой безразмерный коэффициент теплоотдачи.

Число Нуссельта (1887—1957 гг.):



выражает отношение сил инерции (скоростного напора) Fи, = /2 к силам вязкого трения

Безразмерные комплексы обычно не являются точным отношением каких-то сил, а лишь качественно характеризуют их соотношение. В данном случае сила вязкого трения между соседними слоями движущейся в пограничном слое жидкости, действующая на единичную площадку, параллельную плоскости y = 0, равна по закону Ньютона .Заменяя производную отношением конечных разностей (dw/dy) wж/ г, получим , где г — толщина гидродинамического пограничного слоя. Принимая во внимание, что бг~1, получаем выражение

При малых числах Re преобладают силы вязкости и режим течения жидкости ламинарной (отдельные струи потока не перемешиваются, двигаясь параллельно друг другу, и всякие случайные завихрения быстро затухают под действием сил вязкости). При турбулентном течении в потоке преобладают силы инерции, поэтому завихрения интенсивно развиваются. При продольном обтекании пластины ламинарное течение в пограничном слое нарушается на расстоянии хкр от лобовой точки, на котором Reкр=wжхкр/v=5* 105.

При течении жидкостей в трубах ламинарный режим на стабилизированном участке наблюдается до Reкp=wd/ = 2300, а при Re>104 устанавливается развитый турбулентный режим (здесь d — внутренний диаметр трубы).

Число Прандтля (1875—1953):

состоит из величин, характеризующих теплофизические свойства вещества и по существу само является теплофизической константой вещества. Значение числа Рr приводится в справочниках.

В случае естественной конвекции скорость жидкости вдали от поверхности wж = 0 и соответственно Re = 0, но на теплоотдачу будет влиять подъемная сила Fп. Это приведет к появлению другого безразмерного параметра — числа Грасгофа:

Оно характеризует отношение подъемной силы, возникающей вследствие теплового расширения жидкости, к силам вязкости.

При исследовании локального теплообмена кроме безразмерных чисел в уравнения войдут безразмерные координаты, представляющие собой отношение обычных координат к определяющему размеру. Для продольно омываемой пластины это будет Х=х/1.

Основная сложность метода анализа размерностей заключается в том, что нужно знать все параметры, влияющие на искомую величину. Для совершенно неисследованных процессов эти параметры находят, проводя предварительные эксперименты. Если же процесс уже описан математически, хотя бы на уровне дифференциальных уравнений, то в эти уравнения, в граничные и начальные условия к ним, очевидно, входят все влияющие на процесс параметры. Приводя к безразмерному виду математическое описание процесса, получают те же самые безразмерные числа. Этим занимается теория подобия. И, наконец, если даже задача решена аналитически, то и в этом случае для удобства анализа построения номограмм решения часто приводят к безразмерному виду. Например, построить графическую зависимость теплового потока через цилиндрическую стенку от всех влияющих на него параметров очень сложно, а зависимость в безразмерной форме выразится с помощью единственной линии. Причем, если бы не было аналитического решения, мы могли бы эту линию построить на основании результатов экспериментов, а затем подобрать вид функции. Не исключено, что в данном случае мы бы угадали логарифмическую зависимость, но при небольшом интервале изменения параметров ее легко спутать с линейной, тем более что экспериментальные точки сами отклоняются от точной кривой из-за погрешности измерений. Никогда нет полной уверенности, что подобранная эмпирическая зависимость точно соответствует неизвестному реальному закону, поэтому область ее применения всегда ограничивается теми интервалами изменения безразмерных параметров, в которых проведен эксперимент.

45.Что такое коэффициент теплопередачи, и от чего он зависит?

где коэффициент теплоотдачи,

Он характеризует интенсивность процесса теплопередачи от одного теплоносителя к другому через разделяющую их плоскую стенку. Численное значение коэффициента теплопередачи равно тепловому потоку от одного теплоносителя к другому через 1 м2 разделяющей их плоской стенки при разности температур теплоносителей в 1 К. В случае многослойной стенки вместо отношения в формулы, следует подставлять сумму этих отношений для каждого слоя.

Коэффициент теплопередачи есть чисто расчетная величина, которая определяется коэффициентами теплоотдачи с обеих сторон стенки и ее термическим сопротивлением. Важно подчеркнуть, что коэффициент теплопередачи никогда не может быть больше , и . Сильнее всего он зависит от наименьшего из этих значений, оставаясь всегда меньше его. В предельном случае, когда, например,

Коэффициентом теплопередачи пользуются и при расчете теплового потока через тонкие цилиндрические стенки (трубы), если dH/dBH<l,5:

Площадь поверхности трубы FTp считают при этом с той ее стороны, с которой коэффициент теплоотдачи меньше. Если же коэффициенты близки друг к другу, , то целесообразно площадь считать по среднему диаметру трубы d = 0,5 (dвн + dн). В этом случае погрешность от замены в расчетах цилиндрической стенки на плоскую будет минимальна.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 793; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.