Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Если отверст. открыв. четное число зон Френеля то в т. P наблюд. min, если нечетное – то max. 2 страница




2) в статистическом методе опис-ся только вероятность того, что частица может иметь то или иное значение координаты и импульса => статист метод позволяет рассч-ть вер-сть наступления того или иного события.

Квантовая статистика – это раздел физики рассм-й коллек-вы частиц подчиняющ-ся квант-м законам, а классич-я статистика – классич-м зак-м. Принципиальное отличие квант и класс статистики состоит в том, что в класс стат-ке меняются все величины непрерывным способом и => число возм-х сост-й для каждой частицы бесконечно большое. В квант стат-ке величины меняются дискретно и => число возм-х сост-й для каждой частицы конечно. Кроме этого на квант коллективы распространяется принцип неразличимости тождественных частиц.

Состояние эл-нов проводимости в металле опред-ся 4мя квант числами (n,l,m,s). При абсол темп-ре эл-ны проводимости в соответствии с принципом запрета Паули занимают энерг сост-я начиная с самого нижнего. Т к кратность выпожденного энерг уровня с данным значением n равна 2n2, то на каждом энерг уровне будет нах-ся 3*2n2 эл-нов (т к пространство 3хмерное). Все уровни начиная с самого нижнего будут заняты. Наивысший энерг уровень занятый наз-ся уровнем Ферми.

 

 

Билет №10

1. Двойственная природа света. Суть волновой и квантовой теории света. Приведите примеры проявления волновых и квантовых свойств света.

Свет представляет собой сложное явление: в одних случа­ях он ведет себя как электромагнитная волна, в других - какпоток особых частиц, фотонов, что проявляется более отчетливо для очень коротких электромагнитных волн рентгеновское излу­чение, (Гамма- лучи). Поэтому часто под оптикой понимают учение о физических явлениях, связанных с распространением коротких электромагнитных волн.

Волновое св-ва света проявляется: интерференции, дифракции, поляризации.

Корпускулярное св-во: явление внешнего фотоэффекта.

Световая волна - электромагнитная волна, где колеблются векторы Е и Н. Опыт показывает, что действие света на ве­щество определяется, главным образом, вектором Е, который поэтому называют световым вектором. То, что мы называем видимым светом, представляет узкий интервал электромагнитных волн: 0,4-0,75 мкм. Распространение световой волны описывается уравнением Е=Е0Cos(ωt-kr),

где w-частота колебаний, k=2π/λ- волновое число, r-расстояние, отсчитываемые вдоль направления распространения.

Отношение скорости световой волны в вакууме к скорости ее в среде называется абсолютный показателем преломления этой среды n: n=c/υ. С учетом формулы: υ=c/√(εμ) находим n=√(εμ). Т.к. для большинства прозрачных сред μ =1, то n=√ε формула связывает оптические свойства вещества с его электрическими свойствами. Значения n характеризуют оптическую плотность среды, которая тем больше, чем больше n.

2. Спин электрона. Спиновое квантовое число. Экспериментальное подтверждение существования спина у электрона.

Был поставлен эксперимент, для которого брались атомы, у кот-х число электронов нечётно, и механические и магнитные моменты кот-х попарно взаимно компенсируются. Такими атомами явл-ся атомы элем-в 1-ой группы таблицы Менделеева. Важной особенностью элем-в этой группы явл-ся то, что элек-н находящиеся в основном состоянии имеет l=0, Мl =0 Рl =0. Брался источник атомов, поток кот-х пропускали ч\з магн. поле. Т.к. магнитный и механ-й моменты атомов были =0, то эти атомы не должны были отклоняться магнитным полем и на экране должно было наблюдаться 1 пятно. Эксперимент показал: атомы отклон-ся и дают 2 max на экране. Т.к. механ-й и магн-й моменты электрона в атоме обусловленые его движением вокруг ядра были равны 0, а атомы всё равно отклон-сь магн. полем, было предположено, что электрон в атоме обладает собственным механическим Мs и соответствующим ему магнитным Рs моментами, кот-е были названы механическим магнитным спиновым моментами. Спин электрона считается таким же фундаментальным свойством, как заряд и масса. Значение спинового механического момента м\б вычислено по формуле: Мs,где s- спиновое квантовое число, кот-е может принимать 2 значения: s=1/2, s=-1/2.

3. Прохождение микрочастицы через потенциальный барьер. Туннельный эффект. Коэффициент прозрачности.

Зададим потенциальную функцию И(х) в виде: И(х)=0 в 1-й и 3-й области, И(х)=И0 в области 2. Пусть частица движется в «+» направлении оси х из области 1 и на своем пути встречает прямоугольный потенциальный барьер ширины L и высоты Uo.

1)C точки зрения классической физики, если Uo<E (E – энергия микрочастицы), то частица беспрепятственно проходит над барьером. 2)Если Uo>E, то микрочастица отражается от барьера и летит обратно. В квантово-механическом случае при Uo<E час-ца также беспрепятственно проходит из области 1 в область 3. С точки зрения квантовой механики существует отличная от нуля вероятность, что микрочастица просочится через барьер при условии, что Uo>E, и окажется x>L.

В 1 и 3:U=0 => Уравнение Шредингера запишем в виде:

d(c.2)ψ/dx(c.2) + dm/h(в)(с.2)=0 (для первой и третьей областей).

В 2:U=Uo=>(по уравнению Шредингера)

d(c.2)ψ/dx(c.2)+dm(E-Uo)ψ/h(в)(с.2)=0 (для второй области). Решение этого уравнения будем искать в виде: ψ(x)=A e(c. Ø x)

ψ1(x)=A1 e(c. i α x)+B1 e(c. – i α x) (I)

ψ3(x)=A3 e(c. i α x)+B3 e(c. – i α x) (III) α=√2mE/h(в);

A1 и A3- амплитуды волн, расспространяющихся в “+” направлении оси х.B1,B3- --||--||-- в «-» направлении оси х.

ψ2(x)=A2 e(c.βx) + B2 e(c. –βx) (II) β=√2m(Uo – E)/h(в).

Коэффициент отражения: R=|B1(c. 2)/ A1(c. 2)|. Т.к. в области 3 прошедшей волне отразиться не от чего, то отражённой волны в области 3 не будет и =>B3=0. Вероятность прохождения микрочастицы через потенциальный барьер определяется коэффициентом прозрачности барьера: D=|A3(c.2)/A1(c.2)|=

=e(c.-2βL)=e(c. –2L /h(в)√2m(Uo – E)). Для объяснения этого явления на языке классической физике считают, что час-ца проделывает в барьере туннель и ч\з него проходит из области 1 в 3. Поэтому этот эффект называют туннельным эффектом.

Билет №11

1. Дифракционная решетка. Используя графический метод, получите выражение, определяющее положение главных максимумов и минимумов в ее дифракционной картине.

Система параллельных щелей, разделенных непрозрачными промежутками, называется дифракционной решеткой. Расстояние между щелями d=a+b называют периодом решетки.

Рассмотрим диф. реш. d=a+b, перио или пост. диф. Лучи дифрак. от двух щелей имеют опред. разность хода Δ=sinφ, δ=2πΔ/λ=2πdsinφ/ λ.

В д.р. кроме дифрак. от каждой щели происходит сложение кол–й от различ. щелей решетки, т.е. мы имеем дело с многомерной интерполяцией.

В результате интерференции колебаний в фактической плотности линзы получается результирующее колебания с амплитудой А значение которой зависит от угла дифракции j. Для нахождения амплитуды воспользуемся граф–м методом. Будем изображать амплитуду в виде вектора А. В–р A будет max в том случае если все в–ры A распологаются вдоль 1–й прямой (направ. в одну и туже сторону) если 2 сосед–х в–ра A повер–ты др относ др. на угол φ то это возможно только втом случае, если δ =±0,.., ±2πk, 2πdsin φ / λ =±2πk, => dsin φ =±k λ, След–но направление угла φ, удовлет. условию, наблюдается max амплитуды (главный max). Ломаная кривая образ. в–м A будет замык–ся сама по себе в том случае, когда 1–е и послед–е в–ры A направ. в одну сторону 2πk=N δ, где N–общее число щелей реш. ±2πk =N2πdsinφ/ λ => dsin φ =±k λ /N–min. В этом случае мы наблюдаем min вдоль направ–я угла φ. М/у 2–мя min наблюдается добав. max.

2. Решение уравнения Шредингера для водородоподобных атомов. Квантовые числа и их физический смысл.

Рассмотрим систему, состоящую из неподвижного ядра зарядом +z и 1-го электрона, находящегося около ядра (атом водорода или водородоподобная система). Потенциальная функция

U(r)=-ze(c. 2)/4πε0r(c.2). Стационарное уравнение Шредингера для этого случая имеет вид Dψ+ (2m/ħ(c.2))*(E+(1/4πε0)*(ze(c.2)/r(c.2))*ψ=0. Для решения этого уравнения удобно перейти к сферическим координатам: ψ(x,y,z)=ψ(r,θ,φ). Расчёты показывают, что это уравнение Шредингера имеет решение при любом E>0(электрон вне атома). И при E<0, удовлетворяющие условию: En=-(1/4πε0)*(mz(c.2)e(c.4)/2ħ(c.2))*(1/n(с.2)). Собственные функции содержат 3 целочисленных параметра, которые носят название квантовых чисел, n – главное квантовое число, L – орбитальное (азимутальное) квантовое число, m – магнитное квантовое число.

n=1,2,3…, L=0,…., (n-1), т.е. n значений, m=0,±1,…,±L т.е. (2L+1) значений. Квантовые числа имеют определенный физический смысл: n определяет энергию электрона в атоме. L определяет момент импульса электрона в атоме. M=√L(L+1)`*ħ. m определяет проекцию вектора момента импульса на некот-е выделенное направление(ориентация вектора M в пространстве):Nz=mħ- проекция M на внешнее направление.

3. Взаимодействие нуклонов. Свойства и природа ядерных сил.

Громадная энергия связи нуклонов в ядре указывает на очень сильное взаимодействие между ними. Нейтроны и протоны в ядре удерживаются мощными ядерными силами притяжения, которые подавляют расталкивающее действие кулоновских сил между протонами

Свойства ядерных сил: 1. Ядерные силы- это короткодействующие силы. Радиус их действия порядка 10-13 см. 3. Не центр-е.

Ядерные взаимодействия между протонами (р-р),нейтронами (п-п), протоном и нейтроном (р-п) одинаковы, поэтому ядерные силу обладают зарядовой независимостью. Отсюда следует, что природа этих сил отличается от природы электрических и гравитационных сил. Ядерные силы относятся к силам насыщения. Это означает, что каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов. Такое заключений следует из того факта, что Есв~ А Если бы каждый нуклон взаимодействовал с остальными, то Есв ~А(А-1)~А2..

Билет №12

1. Метод зон Френеля. Пользуясь этим методом, получите выражение для амплитуды световой волны в точке наблюдения.

Френель предложил объединил симметрич. т-ки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от т-ки наблюдений была бы равна l/2 и след-но от краев 2-х сосдних волн приход. в т-ку наблюдения в противофазе и при наложении др. на др. ослабивают.

Обозначим ч/з A1 амплитуду кол-й в т-ки P даваемым всеми т-ми источниками нах. внутри 1-й зоны Френеля. Ясно что A1 > A2 > A3

Результат амплитуды кол-й в т.P даваемое всеми зонами Френеля будет A = A1 - A2+A3 - A4…, A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда кол-й = половине амплитуды кол-й даваемой 1-й зоной Френеля.

Графический метод определения результирующей амплитуды.

Разобьем каждую зону Френеля на ряд еще более мелких подзон (колец) настолько узких, что можно считать что кол-я от всех т-х источников внутри такой подзоны приходит в т.P с одинаковой фазой и одной амплитудой. Будем изображать результирующ. колб. от каждой подзоны в виде вектора, длина к-го результир. амплитуда, а угол поворота фазу коллеб. такой подзоны.

2. Сплошной и характеристический рентгеновские спектры. Формула Мозли.

Рентгеновские лучи возникают при бомбардировке твёрдых мишеней быстрыми электронами. Рентгеновское излучение-коротковолновое электромагнитное излучене с λ=10(с. –8)—10(с. –12) м. При небольших ускоренных напряжениях наблюдается тормозное рентгеновское излучение, оно имеет сплошной спектр, максимум кот-го зависит от ускоренного напряжения. Электроны попав в вещество мишени испытывают сильное торможение, т.е. двигаются с ускорением, при этом они излучают электромагнитную волну. EU=hν=h*(c/λmin) => λmin=hc/eU. При увеличении ускоренного напряжения на фоне сплошного рентгеновского излучения появляется характеристическое рентгеновское излучение, обусловленное переходом электронов во внутреннюю электронную оболочку атомов. Характеристические рентгеновские спектры просты и состоят из нескольких линий, кот-е обозначаются Kα,Kβ,Lα,Lβ. 1/λ=R*(z-σ)(c.2)*((1/n(c.2))-(1/m(c.2))), где σ- постоянная экранирования. Мозли установил связь м\у частотой характеристических линий и z- порядковым номером элемента в таблице Менделеева. √w`=c*(z-σ) – закон Мозли, где с-сonst. Закон Мозли следует из сериальной формулы.

3. Явление сверхпроводимости.

Закл-ся в том, что при достаточно низких температурах сопротивление нек-х пров-ков скачком умен-ся до 0. Впервые это явление было обнаружено в 1911г. голланд физиком Камерлинг-Окнес при изучении темп-й зависимости сопр-я ртути. При 20К ртуть полностью теряла свое сопротивление. Темп-ра, при к-х происходит переход в сверхпров-е сост-е наз крит-й.

Явл-е сверхпров-сти это кв эффект проявляющийся в макроскопических масштабах. Кроме полной потери сопр-я сверхпров-е сост-е хар-ся тем, что магн поле не проникает в толщу проводника (эффект Нейпнера), т е сверхпр-к явл-ся идеальным диамагнетиком. μ=0.

Внешнее магн поле м разрушить сверхпров-е сост-е. Зависимость индукции этого поля и макс тока сверхпров-сти от темп-ры имеет вид:

Теория сверхпров-сти очень сложна. В наиболее полном виде она была создана в 1957г. Бардином, Купером, Шриффером (БКШ-теория).

Идея сверхпров-сти закл-ся в след-щем:

Эл-ны в металлах кроме кулоновского отталкивания испытывает особый вид притягивания, в результате чего эл-ны объединяют куперовские пары. Расст-е м/у эл-нами в купер-й паре очень велико. Оно может превышать межатомное расст-е в металлах на много порядков. Т к куперовские пары эл-нов объединяются с противоположно напр-ным эл-ном, то суммарный спин Купер пары =0 и => куперовская пара яв-ся базоном(частица с целым спином). Базоны способны в неограниченном кол-ве накапливаться в одном энерг сост-и.

Согласованное упор-е дв-е куперовских пар в одном энерг сост-и представляют из себя сверхпров-сть. Взаимное притяжение эл-нов в куперовской паре можно объяснить след образом: эл-н при своем дв-и в кр-ле искажает поле кр реш-ки – полож заряж ионы смещ-ся по напр-ю к этому эл-ну. В рез-те чего эл-н окружает себя “шубой” из полож заряж ионов. К ней и притягивается др эл-ны. Для такого дв-я 2х эл-нов необх-ма кр реш-ка. Чем сильнее взаимодействие эл-нов с кр реш-кой, тем проще образоваться куперовской паре, а проводнику сверхпров-сть. Чем лучшей пров-стью обладает в-во в обычном сост-и, тем труднее их перевести в сверхпров-е сост-е (серебро и медь не удается перевести).

 

Билет №13

1. Дисперсия света. Электронная теория дисперсии. Нормальная и аномальная дисперсии. Связь дисперсии с поглощением.

Дисп. света – это зависимость показателя преломления от длины волны l или от n т.к. n=c/u, где u - ск-ть распрост-я света в среде то дисперсия света связана с зависимостью ск-ти распространения волны в вещ-ве от длины и частоты. Различают нормальную и аномальною дисп. При нормальной дисперсии показатель преломления уменьшается с длиной волны. Норм. dn/dl<0, dn/dn>0. При аномальной дисперсии наблюдается обратная зависимость dn/dl>0, dn/dn<0. Пусть Dw- интервал частот в к-м нах. частоты отдельных волн этой суперпозиции. Если спед. частота группы волн w0, Dw<<w0, то такую совокупность волн наз. волновым пакетом. Волновой пакет ограничен в пространстве и имеет вид

Для волнового пакета справедливо DkDx=2p, отсюда k=2p/l, чем >-ше Dx тем >-ше Dk. Для волнового пакета м. выделить 2 способа для распространения фазовую и групповую. Фаз. ск-ть u=w/k – ск-ть распрастран-я т-ки с постоянной фазой. Групповая ск-ть – это ск-ть перемещения max-ма U=dw/dk.

Волновой пакет м. описать ур-ем E=∫(w0-Dw/2) (w0+Dw/2)Awcos(wt-kwr+aw)dw При нормальной дисперсии U<u, при аномальной дисперсии U>u.

Т.к. согласно теор. Максвелла n=Öe, то дисперсия света обусловлена зависимостью диэлектрич. проницаем. от частоты. Дисп. света объясняется взаимодейств.-м эл.-маг. волны с заряжен. частиц. вещ-ва. Эл.-маг. волна заставляет вещ-во вынуждено колебаться электрон. в атомах, т.к. расс-е м/у соседними атомами в диэлектрике значительно < длины волны света, то эл-ны соседних атомов колеблются в одной фазе. В результате смещения эл-в. в атомах меняется дипольные моменты в атомах => атомы излучают вторич. эл.-маг. волны n-которых = n падающей волны т.к. эл-ны в атомах смещаются колеб-ся спифазно эти вторичные волны будут когерен-ми и при наложении интен-ть как м/у собой так и с волной. Результат интерф. зависит от их амплитуд и фаз. В однородном изотропном диэлектрике в результ. интерф. образуется проходящая волна, фазовая ск-ть к-й зависит от n, а направ. совпад. с направ. падающей эл.-маг. волны. n2=e=1+X=1+Pe/(e0E), где X-диэл.-я восприимчивость вещ-ва, Е-напряж. поля падающ. эл-маг. волны, Pe- электр. поляризов. Пусть напряж. эл-го поля направл. вдоль OX, E=Eoxcos(wt-kx+a), Pe=pen0, где pe-дипольн. момент отдельн. атома, n0- число атомов в ед. объема. Т.к. поле направ вдоль ox то pe=-ex, т.о. Pe=-exn0 => n2=1-en0x/(Eoxcos(wt-kx+a)), Запишем диф-е ур-е описыв. движен. эл-в в атоме F=ma=md2x/(d2t) на эл-н в атоме действует a) Fкул=-eEoxcos(wt-kx+a), b) Fупр=-kx=-mw02x, w0=Ö(k/x) => k=w02m,=> md2x/(d2t)=-eEoxcos(wt-kx+a)-mw02x, m- масс. эл-на. Решая это диф. ур-е окнчательно получаем n=Ö(1+n0e2/(e0E(w02-w02))). Видно что это выр-е терпит разрыв при w=w02 такой рез. получается в рез-те того что в 2-м законе Ньютона не была учтена сила трения (затухания) если учесть затухание то разрыва этой ф-ии не будет. Во всякой реальной колеб. сист. всегда есть затухание. Аномальная дисперсия набл-ся в области част-т близких к колеб. эл-в в атоме т.к. в общем случае таких частот (резонансов) м. б. несколько.

Т.к. аномальная диспер. света наблюд. на част–х близких к част–м собств. колеб. эл–в в атомах на к–х вещ–во сильно поглощ. свет, то аномальная диспер. наблюд. в области полос поглощ. вещ–ва.

2. Искусственное двойное лучепреломление. Метод фотоупругости. Эффект Керра.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 290; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.032 сек.