Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Моносахариды




Фенолы

Фено́л (гидроксибензол, устар. карболовая кислота) C6H5OH — простейший представитель класса фенолов. Бесцветные игольчатые кристаллы, розовеющие на воздухе из-за окисления, приводящего к образованию окрашенных веществ. Обладают специфическим запахом гуаши. Растворим в воде (6 г на 100 г воды), в растворах щелоче́й, в спирте, в бензоле, в ацетоне. 5 % раствор в воде — антисептик, широко применяемый в медицине.

Мировое производство фенола на 2006 год составляет 8,3 млн тонн/год. По объёму производств фенол занимает 33-е место среди всех выпускаемых химической промышленностью веществ и 17-е место среди органических веществ.

Получение

 

На 2006 год производство фенола в промышленном масштабе осуществляется тремя способами:

Кумольный метод. Этим способом получают более 95 % всего производимого в мире фенола. В каскаде барботажных колонн кумол подвергают некаталитическому окислению воздухом с образованием гидропероксида кумола (ГПК). Полученный ГПК, при катализе серной кислотой, разлагают с образованием фенола и ацетона. Кроме того, ценным побочным продуктом этого процесса является α-метилстирол.

Около 3 % всего фенола получают окислением толуола, с промежуточным образованием бензойной кислоты.

Весь остальной фенол выделяют из каменноугольной смолы.

Ведутся пилотные испытания установок получения фенола прямым окислением бензола закисью азота и кислотным разложением гидропероксида втор-бутилбензола.

Фенол также можно получить восстановлением хинона.

[править]Химические свойства

 

Обладает слабыми кислотными свойствами, при действии щелочей образует соли — феноляты (например, фенолят натрия - C6H5ONa):

C6H5OH + NaOH = C6H5ONa + H2O

Вступает в реакции электрофильного замещения по ароматическому кольцу. Гидрокси-группа, являясь одной из самых сильных донорных групп, увеличивает реакционную способность кольца к этим реакциям, и направляет замещение в орто- и пара-положения. Фенол с лёгкостью алкилируется, ацилируется, галогенируется, нитруется и сульфируется.

Реакция Кольбе-Шмидта.

Взаимодействие с металлическим натрием:

2C6H5OH + 2Na = 2C6H5ONa + H2↑

Взаимодействие с бромной водой (качественная реакция на фенол):

C6H5OH + 3Br2(aqua) → C6H2(Br)3OH + 3HBr образуется твердое вещество белого цвета 2,4,6 трибромфенол

Взаимодействие с концентрированной азотной кислотой:

2C6H5OH + 6HNO3конц → 2C6H2(NO2)3OH + 6H2О образуется 2,4,6 тринитрофенол

Взаимодействие с хлоридом железа (III)(качественная реакция на фенол):

C6H5OH + FeCl3 → [C6H5OFe]2+(Cl)2- + HCl образуется дихлоридфенолят железа (III)(фиолетовое окрашивание)

[править]Биологическая роль

 

Протеиногенная аминокислота тирозин является структурным производным фенола и может быть рассмотрена как пара-замещённый фенол или α-замещённый пара-крезол. В природе распространены и другие фенольные соединения, в том числе полифенолы. В свободном виде фенол встречается у некоторых микроорганизмов и находится в равновесии с тирозином. Равновесие поддерживает энзим тирозин-фенол-лиаза (КФ 4.1.99.2).

Биологическое значение фенола обычно рассматривается в рамках его воздействия на окружающую среду. Фенол — один из промышленных загрязнителей. Фенол довольно токсичен для животных и человека. Фенол губителен для многих микроорганизмов, поэтому промышленные сточные воды с высоким содержанием фенола плохо поддаются биологической очистке.

[править]Применение

 

По данным на 2006 год мировое потребление фенола имеет следующую структуру:

44 % фенола расходуется на производство бисфенола А, который, в свою очередь, используется для производства поликарбона и эпоксидных смол;

30 % фенола расходуется на производство фенолформальдегидных смол;

12 % фенола гидрированием превращается в циклогексанол, используемый для получения искусственных волокон — нейлона и капрона;

остальные 14 % расходуются на другие нужды, в том числе на производство антиоксидантов (ионол), неионогенных ПАВ — полиоксиэтилированных алкилфенолов (неонолы), других фенолов (крезолов), лекарственных препаратов (аспирин), антисептиков (ксероформа) и пестицидов. Раствор 1,4 % фенола применяется в медицине (орасепт), как обезболивающее и антисептическое средство.

Фенол и его производные обуславливают консервирующие свойства коптильного дыма. Также фенол используют в качестве консерванта в вакцинах. Пример использования, в качестве антисептика — препарат «Орасепт».

Билет№28

Свойства альдегидов. Получение и применение.

Химические свойства альдегидов

 

Для карбонильных соединений характерны реакции различных типов:

 

· присоединение по карбонильной группе;

 

· полимеризация;

 

· конденсация;

 

· восстановление и окисление.

 

Большинство реакций альдегидов и кетонов протекает по механизму нуклеофильного присоединения (AN) по связи С=О.

Реакционная способность в таких реакциях уменьшается от альдегидов к кетонам:

 

 

Это объясняется, главным образом, двумя факторами:

 

· углеводородные радикалы у группы С=О увеличивают пространственные препятствия присоединению к карбонильному атому углерода новых атомов или атомных групп;

 

· углеводородные радикалы за счет +I-эффекта уменьшают положительный заряд на карбонильном атоме углерода, что затрудняет присоединение нуклеофильного реагента.

 

I. Реакции присоединения

 

1. Присоединение водорода (восстановление):

 

R-CH=O + H2 t,Ni → R-CH2-OH

 

первичный спирт

 

2. Присоединение циановодородной кислоты (синильной):

 

Эта реакция используется для удлинения углеродной цепи, а также для получения α-гидроксикислот R-CH(COOH)OH по схеме:

 

R-CH(CN)OH + H2O -> R-CH(COOH)OH + NH3

 

CH3-CH=O + H-CN → CH3-CH(CN)-OH

 

CH3-CH(CN)-OH циангидрин –яд! в ядрах косточек вишен, слив

 

3. Со спиртами – получают полуацетали и ацетали:

 

OH OR’

 

│ │

 

R-C-OR’ R- C -OR’

 

│ │

 

H H

 

полуацеталь ацеталь

 

Полуацетали - соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Взаимодействие полуацеталя с еще одной молекулой спирта (в присутствии кислоты) приводит к замещению полуацетального гидроксила на алкоксильную группу OR' и образованию ацеталя:

 

СH3-CH=O + 2CH3OH H+↔ CH3 –CH-OCH3 + H2O

 

 

OCH3

 

 

Ацетали - соединения, в которых атом углерода связан с двумя алкоксильными (-OR) группами.

 

4. Присоединение воды:

 

H

 

 

HCH=O + H2O ↔ H –C - OH (гидратная форма альдегида – формальдегида)

 

 

OH

 

5. Присоединение реактива Гриньяра

 

(используется для получения первичных спиртов, кроме метанола):

 

R-X(р-р в диэтиловом эфире) + Mg стружка → R-Mg-X (реактив Гриньяра) + Q

 

Здесь R – алкильный или арильный радикал; Х – это галоген.

 

HCH=O + CH3-Mg-Cl → CH3-CH2-O-Mg-Cl (присоединение)

 

CH3-CH2-O-Mg-Cl + H2O → CH3-CH2-OH + Mg(OH)Cl (гидролиз)

 

6. Взаимодействие с аммиаком

 

II. Реакции окисления

 

1. Рекция серебряного зеркала – качественная реакция на альдегидную группу:

 

R-CH=O + 2[Ag(NH3)2]OH → R-C=O +2Ag↓ +3NH3 + H2O

 

 

ONH4

 

(соль аммония)

 

или упрощённо

 

R-CH=O + Ag2O NH3→ R-COOH + 2 Ag↓

 

карбоновая кислота

 

2. Окисление гидроксидом меди(II):

 

R-CH=O + 2Сu(OH)2 t → R-COOH + Cu2O +2H2O

 

голубой красный

 

III. Реакции замещения

 

С галогенами:

 

CH3-CH=O + Cl2 → Cl-CH2-CH=O + HCl

 

хлоруксусный

 

альдегид

 

Cl O

 

│ ║

 

Cl - C – C - H (хлораль или трихлоруксусный альдегид)

 

 

Cl

 

IV. Реакции полимеризации

 

n CH2=O t,kat → (-CH2-O-)n

 

полиформальдегид

 

V. Реакции поликонденсации

 

n H-CH=O + (n+1) C6H5-OH t,kat→ nH2O + [-C6H3(OH)-CH2-C6H3(OH)-]n

 

фенолформальдегидная смола

 

Применение

 

Метаналь (муравьиный альдегид) CH2=O

 

получение фенолформальдегидных смол;

получение мочевино-формальдегидных (карбамидных) смол;

полиоксиметиленовые полимеры;

синтез лекарственных средств (уротропин);

дезинфицирующее средство;

консервант биологических препаратов (благодаря способности свертывать белок).

Этаналь (уксусный альдегид, ацетальдегид) СН3СН=О

 

производство уксусной кислоты;

органический синтез.

 

Билет№29

Химические свойства. Получение

Способы получения. 1. Окисление альдегидов и первичных спиртов — общий способ получения карбоновых кислот. В ка­честве окислителей применяются KМnО4 и K2Сr2О7.

  [O]   [O]  
R-CH2-OH R-CH=O R-CO-OH
спирт альдегид кислота

2 Другой общий способ — гидролиз галогензамещенных угле­водородов, содержащих, три атома галогена у одного атома уг­лерода. При этом образуются спирты, содержащие группы ОН у одного атома углерода — такие спирты неустойчивы и отщепля­ют воду с образованием карбоновой кислоты:

  ЗNаОН      
R-CCl3 [R-C(OH)3] R-COOH + Н2О
  -3NaCl      

3. Получение карбоновых кислот из цианидов (нитрилов) — это важный способ, позволяющий наращивать углеродную цепь при получении исходного цианида. Дополнительный атом угле­рода вводят в состав молекулы, используя реакцию замещения галогена в молекуле галогенуглеводорода цианидом натрия, например:

СН3-Вr + NaCN → CH3 - CN + NaBr.

Образующийся нитрил уксусной кислоты (метилцианид) при на­гревании легко гидролизуется с образованием ацетата аммония:

CH3CN + 2Н2О → CH3COONH4.

При подкислении раствора выделяется кислота:

CH3COONH4 + HCl → СН3СООН + NH4Cl.

4. Использование реактива Гриньяра по схеме:

Н2О
R-MgBr + СО2 → R-COO-MgBr → R-COOH + Mg(OH)Br

5. Гидролиз сложных эфиров:

R-COOR1 + КОН → R-COOK + R'OH,

R-COOK + HCl → R-COOH + KCl.

6. Гидролиз ангидридов кислот:

(RCO)2O + Н2О → 2RCOOH.

7. Для отдельных кислот существуют специфические спосо­бы получения.

Муравьиную кислоту получают нагреванием оксида углерода (II) с порошкообразным гидроксидом натрия под давлением и об­работкой полученного формиата натрия сильной кислотой:

  200 °С, Р   H2SO4  
NaOH + СО HCOONa НСООН

Уксусную кислоту получают каталитическим окислением бу­тана кислородом воздуха:

4Н10 + 5O2 → 4СН3СООН + 2Н2О.

Для получения бензойной кислоты можно использовать окис­ление монозамешенных гомологов бензола кислым раствором перманганата калия:

6Н5-СН3 + 6KMnO4 + 9H2SO4 = 5С6Н5СООН + 3K2SO4 + 6MnSO4 + 14H2O.

Кроме того, бензойную кислоту можно получить из бензальдегида с помощью реакции Канниццаро. В этой реакции бензальдегид обрабатывают 40—60%-ным раствором гидроксида натрия при комнатной температуре. Одновременное окисление и восстано­вление приводит к образованию бензойной кислоты и соответ­ственно фенилметанола (бензилового спирта):

 

Химические свойства. Карбоновые кислоты — более силь­ные кислоты, чем спирты, поскольку атом водорода в карбок­сильной группе обладает повышенной подвижностью благодаря влиянию группы СО. В водном растворе карбоновые кислоты диссоциируют:

RCOOH RCOO- + Н+

Тем не менее из-за ковалентного характера молекул карбоно­вых кислот указанное выше равновесие диссоциации достаточно сильно сдвинуто влево. Таким образом, карбоновые кислоты — это, как правило, слабые кислоты. Например, этановая (уксусная) кислота характеризуется константой диссоциации Ка = 1,7*10-5.

Заместители, присутствующие в молекуле карбоновой кисло­ты, сильно влияют на ее кислотность вследствие оказываемого ими индуктивного эффекта. Такие заместители, как хлор или фенильный радикал оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индуктивный эффект (-/). Оттягивание электронной плотности от карбоксильного ато­ма водорода приводит к повышению кислотности карбоновой кислоты. В отличие от этого такие заместители, как алкильные группы, обладают электронодонорными свойствами и создают положительный индуктивный эффект, +I. Они понижают кислот­ность. Влияние заместителей на кислотность карбоновых кислот наглядно проявляется в значениях констант диссоциации Ka для ряда кислот. Кроме того, на силу кислоты оказывает влияние наличие сопряженной кратной связи.

Карбоновые кислоты Формула Ka
Пропионовая CH3CH2COOH 1,3*10-5
Масляная CH3CH2CH2COOH 1,5*10-5
Уксусная CH3COOH 1,7*10-5
Кротоновая CH3-CH=CH-COOH 2,0*10-5
Винилуксусная CH2=CH-CH2COOH 3,8*10-5
Акриловая CH2=CH-COOH 5,6*10-5
Муравьиная HCOOH 6,1*10-4
Бензойная C6H5COOH 1,4*10-4
Хлоруксусная CH2ClCOOH 2,2*10-3
Тетроновая CH3-C≡C-COOH 1,3*10-3
Дихлоруксусная CHCl2COOH 5,6*10-2
Щавелевая HOOC-COOH 5,9*10-2
Трихлоруксусная CCl3COOH 2,2*10-1

Взаимное влияние атомов в молекулах дикарбоновых кислот приводит к тому, что они являются более сильными, чем одноос­новные.

2. Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они реагируют с активными метал­лами, основными оксидами, основаниями и солями слабых кис­лот:

2RCOOH + Мg → (RCOO)2Mg + Н2,

2RCOOH + СаО → (RCOO)2Ca + Н2О,

RCOOH + NaOH → RCOONa + Н2О,

RCOOH + NaHCO3→ RCOONa + Н2О + СО2↑.

Карбоновые кислоты — слабые, поэтому сильные минераль­ные кислоты вытесняют их из соответствующих солей:

CH3COONa + HCl → СН3СООН + NaCl.

Соли карбоновых кислот в водных растворах гидролизованы:

СН3СООК + Н2О СН3СООН + КОН.

Отличие карбоновых кислот от минеральных заключается в возможности образования ряда функциональных производных.

3. Образование функциональных производных карбоновых кис­лот. При замещении группы ОН в карбоновых кислотах различ­ными группами (X) образуются функциональные производные кислот, имеющие общую формулу R—СО—X; здесь R означает алкильную либо арильную группу. Хотя нитрилы имеют другую общую формулу (R—CN), обычно их также рас­сматривают как производные карбоновых кислот, поскольку они могут быть получены из этих кислот.

Хлорангидриды получают действием хлорида фосфора (V) на кислоты:

R-CO-OH + РСl 5 → R-CO-Cl + РОСl3 + HCl.

Соединение примеры
Кислота   Этановая(уксусная) Бензойная кислота хлорангидрит кислоты   Этаноилхлорид Бензоилхлорид (ацетилхлорид) ангидрид кислоты   Этановый(уксусный) бензойный ангидрит ангидрит сложый эфир   Этилэтаноат(этилацетат) Метилбензоат амид   Этанамид(ацетамид) Бензамид Нитрил   Этаннитрил Бензонитрил (ацетонитрил)

Ангидриды образуются из карбоновых кислот при действии водоотнимающих средств:

2R-CO-OH + Р2О5 → (R-CO-)2O + 2НРО3.

Сложные эфиры образуются при нагревании кислоты со спир­том в присутствии серной кислоты (обратимая реакция этерификации):

 

Механизм реакции этерификации был установлен методом "меченых атомов".

Сложные эфиры можно также получить при взаимодействии хлорангидридов кислот и алкоголятов щелочных металлов:

R-CO-Cl + Na-O-R' → R-CO-OR' + NaCl.

Реакции хлорангидридов карбоновых кислот с аммиаком при­водят к образованию амидов:

СН3-СО-Сl + CН3 → СН3-СО-CН2 + HCl.

Кроме того, амиды могут быть получены при нагревании ам­монийных солей карбоновых кислот:

  t°  
CH3-COONH4 CH3-CO-NH2 + Н2О

При нагревании амидов в присутствии водоотнимающих средств они дегидратируются с образованием нитрилов:

  Р205  
CH3-CO-NH2 CH3-C≡N + Н2О

Функциональные производные низших кислот - летучие жидкости. Все они легко гидролизуются с образованием исходной кислоты:

R-CO-X + Н2О →R-CO-OH + НХ.

В кислой среде эти реакции могут быть обратимы. Гидролиз в щелочной среде необратим и приводит к образованию солей кар­боновых кислот, например:

R-CO-OR' + NaOH → R-CO-ONa + R'OH.

4. Ряд свойств карбоновых кислот обусловлен наличием угле­водородного радикала. Так, при действии галогенов на кислоты в присутствии красного фосфора образуются галогензамещенные кислоты, причем на галоген замещается атом водорода при со­седнем с карбоксильной группой атоме углерода (а-атоме):

  ркр  
СН3-СН2-СООН + Вr2 СН3-СНВr-СООН + НВr

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН2=СН-СООН + Н2 → СН3-СН2-СООН,

СН2=СН-СООН + Сl2 → СН2Сl-СНСl-СООН,

СН2=СН-СООН + HCl → СН2Сl-СН2-СООН,

СН2=СН-СООН + Н2O → НО-СН2-СН2-СООН,

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.

 

5. Окислительно-восстановительные реакции карбоновых кислот.

Карбоновые кислоты при действии восстановителей в при­сутствии катализаторов способны превращаться в альдегиды, спирты и даже углеводороды:

  2[Н]  
СН3СООН СН3СНО + Н2О

 

  4[Н]  
СН3СООН СН3СН2ОН + Н2О

 

  6[Н]  
СН3СООН С2Н6 + 2Н20

Насыщенные карбоновые кислоты устойчивы к действию кон­центрированных серной и азотной кислот. Исключение составля­ет муравьиная кислота:

  Н24(конц)  
НСООН СО + Н2О

Муравьиная кислота НСООН отличается рядом особенностей, поскольку в ее составе есть альдегидная группа:

 

Муравьиная кислота — сильный восстановитель и легко окис­ляется до СО2. Она дает реакцию "серебряного зеркала":

НСООН + 2[Ag(NH3)2]OH → 2Ag + (NH4)2CO3 + 2NH3 + H2O,

или в упрощенном виде:

3 НСООН + Аg2О → 2Аg + СО2 + Н2О.

Кроме того, муравьиная кислота окисляется хлором:

НСООН + Сl2 → СО2 + 2HCl.

В атмосфере кислорода карбоновые кислоты окисляются до СО2 и Н2О:

СН3СООН + 2О2 → 2СО2 + 2Н2О.

6. Реакции декарбоксширования. Насыщенные незамещенные монокарбоновые кислоты из-за большой прочности связи С—С при нагревании декарбоксилируются с трудом. Для этого необхо­димо сплавление соли щелочного металла карбоновой кислоты со щелочью:

  t°  
CH3-CH2-COONa + NaOH С2Н6↑ + Na2CO3

Появление электронодонорных заместителей в углеводород­ном радикале способствует реакции декарбоксилирования:

  70°C  
ССl3СООН CHCl3↑ + СО2

Двухосновные карбоновые кислоты легко отщепляют СО2 при нагревании:

  t°  
НООС-СН2-СООН СН3СООН + CO2

 

Билет№30

СЛОЖНЫЕ ЭФИРЫ

Третья группа – жиры. В отличие от предыдущих двух групп на основе одноатомных спиртов ROH, все жиры представляют собой сложные эфиры, образованные из трехатомного спирта глицерина НОСН2–СН(ОН)–СН2ОН. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9–19 атомами углерода. Животные жиры (коровье масло, баранье, свиное сало) – пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) – вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 3А,Б). Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С11Н23СООН и миристиновой С13Н27СООН. (как и стеариновая и пальмитиновая – это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 3В). При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу.

 

Рис. 3. ГЛИЦЕРИДЫ СТЕАРИНОВОЙ И ПАЛЬМИТИНОВОЙ КИСЛОТЫ (А И Б) – компоненты животного жира. Глицерид линолевой кислоты (В) – компонент льняного масла.

Сложные эфиры минеральных кислот (алкилсульфаты, алкилбораты, содержащие фрагменты низших спиртов С1–8) – маслянистые жидкости, эфиры высших спиртов (начиная с С9) – твердые соединения.

Химические свойства сложных эфиров.

Наиболее характерно для эфиров карбоновых кислот гидролитическое (под действием воды) расщепление сложноэфирной связи, в нейтральной среде оно протекает медленно и заметно ускоряется в присутствии кислот или оснований, т.к. ионы Н+ и НО катализируют этот процесс (рис. 4А), причем гидроксильные ионы действуют более эффективно. Гидролиз в присутствии щелочей называют омылением. Если взять количество щелочи, достаточное для нейтрализации всей образующейся кислоты, то происходит полное омыление сложного эфира. Такой процесс проводят в промышленном масштабе, при этом получают глицерин и высшие карбоновые кислоты (С15–19) в виде солей щелочных металлов, представляющих собой мыло (рис. 4Б). Содержащиеся в растительных маслах фрагменты ненасыщенных кислот, как и любые ненасыщенные соединения, могут быть прогидрированы, водород присоединяется к двойным связям и образуются соединения, близкие к животным жирам (рис. 4В). Этим способом в промышленности получают твердые жиры на основе подсолнечного, соевого или кукурузного масла. Из продуктов гидрирования растительных масел, смешанных с природными животными жирами и различными пищевыми добавками, изготавливают маргарин.

 

Основной способ синтеза – взаимодействие карбоновой кислоты и спирта, катализируемое кислотой и сопровождаемое выделением воды. Эта реакция обратна показанной на рис. 3А. Чтобы процесс шел в нужном направлении (синтез сложного эфира), из реакционной смеси дистиллируют (отгоняют) воду. Специальными исследованиями с применением меченых атомов удалось установить, что в процессе синтеза атом О, входящий в состав образующейся воды, отрывается от кислоты (отмечено красной пунктирной рамкой), а не от спирта (нереализующийся вариант выделен синей пунктирной рамкой).

По такой же схеме получают сложные эфиры неорганических кислот, например, нитроглицерин (рис. 5Б). Вместо кислот можно использовать хлорангидриды кислот, метод применим как для карбоновых (рис. 5В), так и для неорганических кислот (рис. 5Г).

Взаимодействие солей карбоновых кислот с галоидалкилами RCl также приводит к сложным эфирам (рис. 5Г), реакция удобна тем, что она необратима – выделяющаяся неорганическая соль сразу удаляется из органической реакционной среды в виде осадка.

 

Жиры

Жиры являются сложными эфирами, образованными высшими одноосновными карбоновыми кислотами, главным образом пальмитиновой, стеариновой (насыщенные кислоты) иолеиновой (ненасыщенная кислота) и трехатомным спиртом - глицерином. Общее название таких соединений - триглицериды

Природные жиры представляют собой не индивидуальное вещество, а смесь различных триглицеридов.

Образование одного из триглицеридов, например триглицерида стеариновой кислоты, можно изобразить уравнением

 

глицерин стеариновая кислота стеариновый триглицерид

В состав молекул триглицеридов могут входить разнородные кислотные радикалы, что особенно характерно для природных жиров, однако остаток глицерина является составной частью всех жиров:

 

Все жиры легче воды и в ней нерастворимы. Они хорошо растворяются в бензине, эфире, тетрахлориде углерода, сероуглероде, дихлорэтане и других растворителях. Хорошо впитываются бумагой и кожей. Жиры содержатся во всех растениях и животных. Жидкие жиры обычно называются маслами. Твердые жиры (говяжий, бараний и др) состоят главным образом из триглицеридов предельных (твердых) кислот, жидкие (подсолнечное масло и др.) - из триглицеридов непредельных (жидких) кислот.

Жидкие жиры превращаются в твердые путем реакции гидрогенизации. Водород присоединяется по месту разрыва двойной связи в углеводородных радикалах молекул жиров:

 

Реакция протекает при нагревании под давлением и в присутствии катализатора - мелко раздробленного никеля. Продукт гидрогенизации - твердый жир (искусственное сало), называется саломасом идет на производство мыла, стеарина и глицерина. Маргарин - пищевой жир, состоит из смеси гидрогенизованных масел (подсолнечного, хлопкового и др.), животных жиров, молока и некоторых других веществ (соли, сахара, витаминов и др.).

Важное химическое свойство жиров, как и всех сложных эфиров, - способность подвергаться гидролизу (омылению). Гидролиз легко протекает при нагревании в присутствии катализаторов - кислот, щелочей, оксидов магния, кальция, цинка:

 

Реакция гидролиза жиров обратима. Однако при участии щелочей она доходит практически до конца - щелочи превращают образующиеся кислоты в соли и тем самым устраняют возможность взаимодействия кислот с глицерином (обратную реакцию).

Жиры - необходимая составная часть пищи. Они широко использу­ются в промышленности (получение глицерина, жирных кислот, мыла).

Углеводы

Углеводы - кислородсодержащие органические вещества, в которых водород и кислород находятся, как правило, в соотношении 2:1 (как и в молекуле воды).

Общая формула большинства углеводов - C n (H2O) m. Но этой общей формуле отвечают и некоторые другие соединения, не являющиеся углеводами, например: C(H2O) то есть HCHO или C2(H2O)2 то есть CH3COOH.

В линейных формах молекул углеводов всегда присутствует карбонильная группа (как таковая, или в составе альдегидной группы). И в линейной, и в циклической формах молекул углеводов присутствуют несколько гидроксильных групп. Поэтому углеводы относят к двуфункциональным соединениям.

Углеводы по их способности гидролизоваться делятся на три основных группы: моносахариды, дисахариды и полисахариды. Моносахариды (например, глюкоза) не гидролизуется, молекулы дисахаридов (например, сахарозы) гидролизуются с образованием двух молекул моносахаридов, а молекулы полисахаридов (наример, крахмала) гидролизуются с образованием множества молекул моносахаридов.

Если в линейной форме молекулы моносахарида есть альдегидная группа, то такой углевод относится к альдозам, т. е. представляет собой альдегидоспирт (альдозу), если же карбонильная группа в линейной форме молекулы не связана с атомом водорода, то это кетоноспирт (кетоза)

По числу атомов углерода в молекуле моносахариды делятся на триозы (n = 3), тетрозы (n = 4), пентозы (n =5), гексозы (n = 6) и т. д. В природе чаще всего встречаются пентозы и гексозы.

Если в линейной форме молекулы гексозы есть альдегидная группа, то такой углевод относится к альдогексозам (например, глюкоза), а если только карбонильная, то - к кетогексозам (например, фруктоза)

Глюкоза (пример альдогексозы) Фруктоза (пример кетогексозы) Рибоза (пример альдопентозы)
Структурные формулы циклической формы Структурные формулы циклической формы Структурные формулы циклической формы
Структурные формулы линейной формы Структурные формулы линейной формы Структурные формулы линейной формы

 

Сложность химического и пространственного строения моносахаридов приводит к тому, что у них существует множество изомеров, так, например, существует несколько десятков изомерных гексоз.

Картина осложняется еще и тем, что при растворении моносахаридов у части молекул происходит обратимое раскрытие цикла, а обратная циклизация может привести к образованию другого изомера. Для -глюкозы (обычной кристаллической формы глюкозы) этот процесс выражается следующим уравнением:

         
-форма   альдегидная (линейная)форма   -форма

 

Физические свойства моносахаридов: бесцветные кристаллические вещества, растворимые в воде, на вкус сладкие.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 919; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.