Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вычисление средних показателей динамики




Средний уровень ряда называется средней хронологической.

Средняя хронологическая − это средняя величина из показателей, изменяющихся во времени.

В интервальном ряду с равными интервалами средний уровень ряда определяется по формуле простой средней арифметической.

Средний уровень ряда в интервальном ряду динамики требует, чтобы было указано, за какой период времени он вычислен (среднемесячный, среднегодовой и т.д.).

 

Пример 1 Имеются следующие данные о товарообороте, ден.ед.:

 

Месяц январь февраль март
Товарооборот      

 

Вычислить среднемесячный товарооборот за первый квартал.

Т.к. нам дан интервальный ряд с равными интервалами, применим формулу простой средней арифметической:

Если интервальный ряд имеет разные интервалы, то его вначале нужно привести к ряду с равными интервалами, а затем можно будет использовать формулу простой средней арифметической.

Пример 2 Имеются следующие данные о товарообороте, ден.ед.:

 

Месяц январь февраль март 2-ой квартал
Товарооборот        

 

Будем считать, что во втором квартале товарооборот распределялся по месяцам равномерно, тогда среднемесячный товарооборот за 1-ое полугодие:

Так как показатели моментных рядов не обладают свойством суммарности, то среднюю нельзя вычислить, применяя формулу простой средней арифметической, в связи с тем, что остатки менялись непрерывно в течение месяца, а данные приводятся на определённый день.

Поэтому мы воспользуемся приближенным методом, основанным на предположении, что изучаемое явление менялось равномерно в течение каждого месяца. Чем короче будет интервал ряда, тем меньше ошибка будет допущена при использовании этого допущения.

Получим формулу:

Эта формула применяется для вычисления среднего уровня в моментных рядах с равными интервалами.

Пример 3 Имеются данные об остатках строительных материалов на начало месяца, ден. ед.:

На дату 1.01 1.02 1.03 1.04
Остатки        

 

Определить средний остаток за 1-й квартал.

Решение.

.

Если интервалы в моментных рядах не равны, то средний уровень ряда вычисляется по формуле:

где - средний уровень в интервалах между датами,

t - период времени (интервал ряда)

Пример 4 Имеются данные об остатках сырья и материалов, ден. ед

На дату 01.01 01.02 01.03 01.04 01.07
Остатки          

 

Найти среднемесячные остатки сырья и материалов за первое полугодие.

Применяем формулу:

Средний абсолютный прирост вычисляется двумя способами:

1 Как средняя арифметическая простая годовых (цепных) приростов, т.е.

.

2 Как частное от деления базисного прироста к числу периодов:

.

Расчет среднего абсолютного значения 1% прироста за несколько лет производится по формуле простой средней арифметической:

При вычислении среднегодового темпа роста нельзя применять простую среднюю арифметическую, т.к. сумма годовых темпов не будет иметь смысла. В этом случае применяют среднюю геометрическую, т.е.:

где Трi − годовые цепные темпы роста;

n − число темпов.

Поскольку произведение цепных темпов равно темпу базисному, то средний темп роста может быть рассчитан следующим образом:

При расчёте по этой формуле не обязательно знать годовые темпы роста. Величина среднего темпа будет зависеть от соотношения начального и конечного уровня ряда.

Пример 5 Номинальная заработная плата работников народного хозяйства Республики Беларусь характеризуется данными, представленными в таблице 1.

 

Таблица 1 – Номинальная заработная плата работников народного хозяйства Республике Беларусь

 

Год                
Размер заработной платы, тыс.р. 558,9 1123,0 1189,2 2250,7 3347,5 4463,7 5582,2 7701,1

 

Для анализа динамики заработной платы определить:

1 среднегодовой размер заработной платы за 8 лет;

2 ежегодные и базисные абсолютные приросты, темпы роста и прироста заработной платы;

3 абсолютное значение 1% прироста;

4 среднегодовой абсолютный прирост;

5 среднегодовой темп роста и среднегодовой темп прироста;

6 среднее значение 1% прироста.

Результаты представить в таблице, сделать выводы.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1001; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.