Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм. 1. Шаг 1. Задаются начальные границы отрезка и число итераций , рассчитывают начальные точки деления:

Шаг 3.

Алгоритм

1. Шаг 1. Задаются начальные границы отрезка и число итераций , рассчитывают начальные точки деления: и значения в них целевой функции: .

2. Шаг 2. .

· Если , то .

· Иначе .

· Если , то и останов.

· Иначе возврат к шагу 2.

5. В чем состоят достоинства и недостатки метода Фибоначи?

Недостаток метода Фибоначчи состоит в том, что стратегия поиска существенно зависит от заранее заданного числа шагов поиска.

6. Что такое «золотое сечение»? В чем заключается сущность метода золотого сечения?

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) — делениенепрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

Отношение большей части к меньшей в этой пропорции выражается квадратичной иррациональностью

и, наоборот, отношение меньшей части к большей

Число называется также золотым числом.

В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος) впервые встречается в «Началах» Евклида (ок. 300 лет до н. э.), где оно применяется для построения правильного пятиугольника.

Лука Пачоли, современник и друг Леонардо да Винчи, называл это отношение «божественной пропорцией». Термин «золотое сечение» (goldener Schnitt) был введён в обиход Мартином Омом в 1835 году.

Золотое сечение имеет множество замечательных свойств, но ещё больше свойств вымышленных

Метод золотого сечения — метод поиска значений действительно-значной функции на заданном отрезке. В основе метода лежит принцип деления в пропорцияхзолотого сечения. Наиболее широко известен как метод поиска экстремума в решении задач оптимизации

Описание метода

Пусть задана функция . Тогда для того, чтобы найти определённое значение этой функции на заданном отрезке, отвечающее критерию поиска (пусть это будет минимум), рассматриваемый отрезок делится в пропорции золотого сечения в обоих направлениях, то есть выбираются две точки и такие, что:

Иллюстрация выбора промежуточных точек метода золотого сечения.

, где — пропорция золотого сечения.

Таким образом:

То есть точка делит отрезок в отношении золотого сечения. Аналогично делит отрезок в той же пропорции. Это свойство и используется для построения итеративного процесса.

· 1) На первой итерации заданный отрезок делится двумя симметричными относительно его центра точками и рассчитываются значения в этих точках.

· 2) После чего тот из концов отрезка, к которому среди двух вновь поставленных точек ближе оказалась та, значение в которой максимально (для случая поискаминимума), отбрасывают.

· 3) На следующей итерации в силу показанного выше свойства золотого сечения уже надо искать всего одну новую точку.

· 4) Процедура продолжается до тех пор, пока не будет достигнута заданная точность.

<== предыдущая лекция | следующая лекция ==>
Мировоззрение и профессиональное мышление | В чем Аристотель видел трудности познания
Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 921; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.