КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Цикл КарноЦикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов. Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году. Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется. Описание цикла Карно:
Цикл Карно в координатах P и V Цикл Карно в координатах T и S Пусть тепловая машина состоит из нагревателя с температурой TH, холодильника с температурой TX и рабочего тела. Цикл Карно состоит из четырёх стадий:
При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия (поскольку при δ Q = 0). Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия). 20.Энтропия: определение, закон возрастания энтропии Энтропия — это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, что коэффициент полезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу. Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно. , где dS — приращение энтропии; δ Q — минимальная теплота подведенная к системе; T — абсолютная температура процесса; Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 3.13.
Пусть процесс будет необратимым, а процесс - обратимым. Тогда неравенство Клаузиуса для этого случая примет вид: Так как процесс является обратимым, для него можно воспользоваться соотношением (3.53), которое дает: Подстановка этой формулы в неравенство (3.55) позволяет получить выражение: Сравнение выражений позволяет записать следующее неравенство: , в котором знак равенства имеет место в случае, если процесс является обратимым, а знак больше, если процесс - необратимый. Если рассмотреть адиабатически изолированную термодинамическую систему, для которой , то выражение примет вид или в интегральной форме Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом: «В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс» Записанное утверждение является ещё одной формулировкой второго начала термодинамики. Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.
Дата добавления: 2015-04-24; Просмотров: 697; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |