Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фундаментальные свойства живого. 1 страница. Решить задачу на моногибридное скрещивание




Решить задачу на моногибридное скрещивание.

Надо определить генотип либо одного из родителей, либо гибридного потомства, либо расщепление признаков во втором поколении. Для этого следует записать схему скрещивания: выписать известные генотипы родителей, образуемые ими гаметы, генотипы потомства, сопоставить с фенотипами и определить неизвестный генотип. Например, надо определить генотип потомства при скрещивании растений гороха с желтыми и зелеными семенами: известно, что особь с желтыми семенами гетерозиготна, желтый цвет — доминантный, а зеленый — рецессивный. Схема скрещивания будет выглядеть так:



Ответ: одна часть потомства будет гетерозиготна, имеет желтые семена, вторая часть — гомозиготна по рецессивному признаку и имеет зеленые семена.

 

 

К числу фундаментальных свойств, совокупность которых характеризует жизнь, относятся: самообновление, свя­занное с потоком вещества и энергии; самовоспроизведение, обеспечивающее преемственность между сменяющими друг друга генерациями биологиче­ских систем, связанное с потоком ин­формации; саморегуляция, базирующая­ся на потоке вещества, энергии и ин­формации.

Перечисленные фундаментальные свойства обусловливают основные ат­рибуты жизни: обмен веществ и энер­гии, раздражимость, гомеостаз, ре­продукцию, наследственность, измен­чивость, индивидуальное и филогенети­ческое развитие, дискретность и целост­ность.

Обмен веществ и энергии. Ха­рактеризуя явления жизни, Ф. Эн­гельс в работе «Диалектика природы» писал: «Жизнь — это способ существо­вания белковых тел, существенным мо­ментом которого является постоянный обмен веществ с окружающей их внеш­ней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». При этом Ф. Энгельс отмечал, что обмен веществ может иметь место и между телами неживой природы. Однако прин­ципиально обмен веществ как свойство живого качественно отличается от об­менных процессов в неживых телах. Для того чтобы показать эти отличия, рассмотрим ряд примеров.

Горящий кусок угля находится в состоянии обмена с окружающей при­родой, происходит включение кисло­рода в химическую реакцию и выделе­ние углекислого газа. Образование ржавчины на поверхности железного предмета является следствием обмена со средой. Но в результате этих про­цессов неживые тела перестают быть тем, чем они были. Наоборот, для тел живой природы обмен с окружающей средой является условием существова­ния. В живых организмах обмен ве­ществ приводит к восстановлению раз­рушенных компонентов, заменяя их новыми, подобными им, т. е. к само­обновлению и самовоспроизведению, или построению тела живого организ­ма за счет усвоения веществ из окру­жающей среды.

Из сказанного следует, что организ­мы существуют как открытые системы. Через каждый организм идет непре­рывно поток вещества и поток энер­гии. Осуществление этих процессов обусловлено свойствами белков, осо­бенно их каталитической активностью. При этом несмотря на непрерывное обновление вещества, структуры в жи­вом сохраняются, точнее, непрерывно воспроизводятся, что связано с инфор­мацией, заложенной в нуклеиновых кис­лотах. Нуклеиновые кислоты облада­ют свойством хранить и воспроизво­дить наследственную информацию, а также реализовывать ее через синтез белков. Благодаря тому, что организ­мы— открытые системы, они находятся в единстве со средой, а физические, химические и биологические свойства окружающей среды обусловливают осуществление всех процессов жиз­недеятельности.

Раздражимость. Эта неотъемле­мая черта, свойственная всему живому, является выражением одного из общих свойств всех тел природы — свойства отражения. Она связана с передачей информации из внешней среды любой биологической системе (организм, ор­ган, клетка) и проявляется реакциями этих систем на внешнее воздействие. Благодаря этому свойству достигается уравновешивание организмов с внеш­ней средой: организмы избирательно реагируют на условия окружающей среды, способны извлекать из нее все необходимое для своего существования, а следовательно, с ними связан столь характерный для живых организмов обмен веществ, энергии и информации. Свойство раздражимости связано с хи­мическим строением самого субстрата жизни.

Получение необходимой информации обеспечивает в биологических систе­мах саморегуляцию, которая осуществ­ляется по принципу обратной связи. Продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составляют началь­ное звено в длинной цепи реакций. По принципу обратной связи регулиру­ются процессы обмена веществ, репро­дукции, считывания наследственной информации, а следовательно, про­явление наследственных свойств в ин­дивидуальном развитии и т. д.

Саморегуляцией в организмах под­держивается постоянство структурной организации—гомеостаз. Организмам свой­ственно постоянство химического со­става, физико-химических особенно­стей. Для всех живых существ харак­терно наличие механизмов, поддержи­вающих постоянство внутренней среды. Структурная организация в широ­ком смысле, т. е. определенная упоря­доченность, обнаруживается не только при исследовании жизнедеятельности отдельных организмов. Организмы раз­личных видов, связанные друг с дру­гом средой обитания, составляют био­ценозы (исторически сложившиеся со­общества). В биоценозах в результате обмена веществ, энергии и информации между организмами и окружающей их неживой природой также поддержива­ется определенный биоценотический го­меостаз: постоянство видового состава и числа особей каждого вида.

Биологическим системам на различ­ных уровнях организации свойственна адаптация. Под адаптацией понимается при­способление живого к непрерывно ме­няющимся условиям среды. В основе адаптации лежат явления раздражи­мости и характерные для нее адекватные ответные реакции. Адаптации вырабо­тались в процессе эволюции как след­ствие выживания наиболее приспособле-ных. Без адаптации невозможно под­держание нормального существования.

Репродукция. В связи с тем что жизнь существует в виде отдельных (дискретных) биологических систем (клетки, организмы и др.) и существо­вание каждой отдельно взятой биологи­ческой системы ограничено во времени, поддержание жизни на любом уровне связано с репродукцией. Любой вид состоит из особей, каждая из которых рано или поздно перестанет существо­вать, но благодаря репродукции (размножению) жизнь вида не прекраща­ется. Размножение всех видов, населяю­щих Землю, поддерживает существо­вание биосферы. Самовоспроизведение намолекулярном уровне обусловли­вает особенности обмена веществ живых организмов по сравнению с неживыми телами.

 

На молекулярном уровне репродук­ция осуществляется на основе матрич­ного синтеза. Принцип матричного син­теза заключается в том, что новые мо­лекулы синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул. Мат­ричный синтез лежит в основе образо­вания молекул белков и нуклеиновых кислот.

Наследственность обеспечивает материальную преемственность (поток информации) между поколениями орга­низмов. Она тесно связана с репродук­цией (авторепродукцией) жизни на мо­лекулярном, субклеточном и клеточ­ном уровнях. Хранение и передача на­следственной информации осуществля­ются нуклеиновыми кислотами. Бла­годаря наследственности из поколения в поколение передаются признаки, обес­печивающие приспособление организ­мов к среде обитания.

Изменчивость — свойство, про­тивоположное наследственности, свя­занное с появлением признаков, отли­чающихся от типичных. Если бы при репродукции всегда проявлялась толь­ко преемственность прежде суще­ствовавших свойств и признаков, то эволюция органического мира была бы невозможна; но живой природе свой­ственна изменчивость. В первую оче­редь, она связана с «ошибками» при репродукции. По-иному построенные молекулы нуклеиновой кислоты несут новую наследственную информацию. Это новая измененная информация в большинстве случаев бывает вред­ной для организма, но в ряде случаев в результате изменчивости организм приобретает новые свойства, полезные в данных условиях. Новые признаки подхватываются и закрепляются отбором. Так создаются новые формы, новые виды. Таким образом, наслед­ственная изменчивость создает предпо­сылки для видообразования и эволю­ции, а тем самым и существования жизни.

Индивидуальное развитие. Ор­ганизмы, появляющиеся в результате репродукции, наследуют не готовые признаки, а определенную генетическую информацию, возможность разви­тия тех или иных признаков. Эта на­следственная информация реализуется во время индивидуального развития. Индивидуальное развитие выражает­ся, как правило, в увеличении массы (рост), что, в свою очередь, базируется на репродукции молекул, клеток и других биологических структур, а так­же в дифференцировке, т. е. появле­нии различий в структуре, усложнении функций и т. д.

Филогенетическое развитие, основные закономерности которого ус­тановлены Ч. Дарвино.м, (1809—1882), базируется на прогрессивном размно­жении, наследственной изменчивости, борьбе за существование и отборе. Действие этих факторов привело к огромному разнообразию форм жизни, приспособленных к различным усло­виям среды обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организ­мов, все усложняющихся многоклеточ­ных вплоть до человека. Однако вместе с человеком появилась новая форма су­ществования материи — социальная, высшая по сравнению с биологической и не сводимая к ней. В силу этого чело­век в отличие от всех других существ представляет собой биосоциальный ор­ганизм.

Дискретность и целостность. Жизнь характеризуется диалектиче­ским единством противоположностей: она одновременно целостна и дискретна. Орга­нический мир целостен, существова­ние одних организмов зависит от дру­гих. В очень общей и упрощенной форме это можно представить так. Жи­вотные-хищники для своего питания

 

нуждаются в существовании расти­тельноядных, а последние — в существовании растений. Растения в про­цессе фотосинтеза поглощают из атмо­сферы СО2, выделение которого в ат­мосферу связано с жизнедеятельностью живых организмов. Кроме того, расте­ния из почвы получают ряд минераль­ных веществ, количество которых не истощается благодаря разложению ор­ганических веществ, осуществляемому бактериями, и т. д.

Органический мир целостен, так как составляет систему взаимосвязанных частей, и в то же время дискретен. Он состоит из единиц — организмов, или особей. Каждый живой организм диск­ретен, так как состоит из органов, тка­ней, клеток, но вместе с тем каждый из органов, обладая определенной авто­номностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое цел л Наследственная информация осуществ­ляется генами, но ни один из генов вне всей совокупности не определяет разви­тие признака и т. д. Жизнь связана с молекулами белков и нуклеиновых кис­лот, но только их единство, целостная система обусловливает существование живого.

С дискретностью жизни связаны раз­личные уровни организации органиче­ского мира.

Уровня организации живого. В серединеХХ в. в биологии сложились представления об уровнях организа­ции как конкретном выражении упо­рядоченности, являющейся одним из основных свойств живого (биологические микросистемы: мол., субклеточ., клеточ.; биолог.мезосист.:тк., ор., орг.; биол.макросис.: поп.-вид., биоценотич.).

Живое на нашей планете представле­но в виде дискретных единиц — орга­низмов, особей. Каждый организм, с одной стороны, состоит из единиц под­чиненных ему уровней организации (ор­ганов, клеток, молекул), с другой — сам является единицей, входящей в состав надорганизменных биологиче­ских макросистем (популяций, биоце­нозов, биосферы в целом).

На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организа­ция (упорядоченность), обмен веществ, энергии и информации и т.д. Характер проявления основных свойств жизни на каждом из уровней имеет качественные особенности, упорядоченность. Как из­вестно, в результате обмена веществ, энергии и информации устанавливает­ся единство живого и среды, но понятие среды для разных уровней различно. Для дискретных единиц молекулярно­го и надмолекулярного (субклеточно­го) уровней окружающей средой явля­ется внутренняя среда клетки; для кле­ток, тканей и органов — внутренняя среда организма. Внешняя живая и неживая среда на этих уровнях орга­низации воспринимается через измене­ние внутренней среды, т. е. опосредо­ванно. Для организмов (индивидуумов) и их сообществ среду составляют орга­низмы того же и других видов и условия неживой природы.

Существование жизни на всех уров­нях подготавливается и определяется структурой низшего уровня. Характер клеточного уровня организации опреде­ляется молекулярным и субклеточным уровнями, организменный— клеточ­ным, тканевым, органным, видовой (популяционный) — организменным и т. д. Следует отметить большое сходство дискретных единиц на низших уров­нях и все возрастающее различие на высших уровнях.

Молекулярный уровень. На молекулярном уровне обнаружива­ется удивительное однообразие диск­ретных единиц. Жизненный субстрат для всех животных, растений, вирусов составляет всего 20 одних н тех же ами­нокислот и 4 одинаковых азотистых основания, входящих в состав молекул нуклеиновых кислот. Близкий со­став имеют липиды и углеводы. У всех организмов биологическая энергия за­пасается в виде богатых энергией аденозинфосфорных кислот (АТФ, АДФ, АМФ). Наследственная информация у всех заложена в молекулах ДНК (ис­ключение составляют лишь РНК-содержащие вирусы), способной к саморепро­дукции. Реализация наследственной информации осуществляется при уча­стии молекул РНК, синтезируемых на матричных молекулах ДНК. В связи с тем, что с молекулярными структурами связано хранение, изменение и реали­зация наследственной информации, этот уровень иногда называют молекулярно-генетическим.

Клеточный уровень. На клеточном уровне также отмечается однотипность всех живых организмов. Клетка является основной самостоятель­но функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уров-не возможны биосинтез и реализация наследственной информации. Клеточ­ный уровень у одноклеточных организ­мов совпадает с организменным. В ис­тории жизни на нашей планете был такой период (первая половина архейской эры), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоце­нозы и биосфера в целом.

Тканевый уровень. Сово­купность клеток с одинаковым типом ор­ганизации составляет ткань. Тканевый уровень возник вместе споявлением многоклеточных животных и расте­ний, имеющих дифференцированные ткани. У многоклеточных организмов он развивается в период онтогенеза. Большое сходство между всеми орга­низмами сохраняется на тканевом уров­не. Совместно функционирующие клет­ки, относящиеся к разным тканям, со­ставляют органы. Всего лишь 5 основ­ных тканей входят в состав органов всех многоклеточных животных и 6 ос­новных тканей образуют органы рас­тений.

Организменный (онтоге­нетический)уровень. На организменном уровне обнаруживает­ся труднообозримое многообразие форм. Разнообразие организмов, относящих­ся к разным видам, да и в пределах одного вида,— следствие не разнооб­разия дискретных единиц низшего по­рядка, а все усложняющихся их про­странственных комбинаций, обуслов­ливающих новые качественные особен­ности. В настоящее время на Земле обитает более миллиона видов живот­ных и около полумиллиона видов выс­ших растений. Каждый вид состоит из отдельных индивидуумов.

Особь — организм как целое — эле­ментарная единица жизни. Вне особей в природе жизнь не существует. На организменном уровне протекают про­цессы онтогенеза, поэтому уровень этот называют еще онтогенетическим. Нервная и гуморальная системы осу­ществляют саморегуляцию в организ­ме и обусловливают определенный гомеостаз.

Популяционно-видовой уровень. Совокупность организ­мов (особей) одного вида, населяющих определенную территорию, свободно между собой скрещивающихся, состав­ляет популяцию. Популяция — это элементарная единица эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биогеоценозов.

Биоценотический и биосферный уровни. Биогеоценозы — исторически сложившиеся ус­тойчивые сообщества популяций раз­ных видов, связанных между собой и с окружающей неживой природой обме­ном веществ, энергии и информации. Они являются элементарными систе­мами, в которых осуществляется ве­щественно-энергетический круговорот, обусловленный жизнедеятельностью организмов. Биогеоценозы составля­ют биосферу и обусловливают все процессы, протекающие в ней.

Только при комплексном изучении явлений жизни на всех уровнях можно получать целостное представление об особой (биологической) форме суще­ствования материи.

Представление об уровнях организа­ции жизни имеет непосредственное отношение к основным принципам меди­цины. Оно заставляет смотреть на здо­ровый и больной человеческий орга­низм как на целостную, но в то же вре­мя сложную иерархически соподчинен­ную систему организации. Знание структур и функций на каждом из них помогает вскрыть сущность болезнен­ного процесса. Учет той человеческой популяции, к которой относится данный индивидуум, может потребоваться, на­пример, при диагностике наследствен­ной болезни. Для вскрытия особенно­стей течения заболевания и эпидеми­ческого процесса необходимо также учи­тывать особенности биоценотической и социальной среды. Имеет ли дело врач с отдельным больным или челове­ческим коллективом, он всегда ос­новывается на комплексе знаний, полученных на всех уровнях биоло­гических микро-, мезо- и макросис­тем.

 

 

(3) Клетка как элементарная генетиче­ская и структурно-функциональная биологическая единица.

Клетка — элементарная биологиче­ская система, способная к само­обновлению, самовоспроизведению и развитию. Клеточные структуры ле­жат в основе строения растений и животных. Каким бы многообразным ни представлялось строение организмов, в основе его лежат сходные структуры—клетки. Среди современных организмов можно последовательно проследить формирование клетки в процессе эволюции органиче­ского мира — от прокариотов, таких, как микоплазма и дробянки (общее на­звание бактерий и синезеленых водорослей), к эукариотам. В отношении прокариот и животных типа простей­ших понятия «клетка» и «организм> совпадают. Их называют одноклеточны­ми. Одноклеточными являются также некоторые виды- водорослей и грибов. Большинство растений и животных состоят из многих клеток; они получили название многоклеточных. У многокле­точных организмов клетки образуют ткани, входящие в состав органов. Жизнедеятельность клеток у много­клеточных подчинена координирующе­му влиянию целостного организма. Ко­ординация у животных осуществляется нервной системой и гуморальными факторами, т. е. жидкостями, циркули­рующими в организме, а у растений — непосредственной цитоплазматической связью между клетками и циркулирую­щими веществами (фитогормонами).

Клеточная теория Шванна. Немецкий зоолог Т. Шванн (1810-1882) в 1839 г. опубликовал труд «Микроско­пические исследования о соответствии в структуре и росте животных и расте­ний». В этой классической работе бы­ли заложены основы клеточной теории. Шванн нашел верный принцип сопо­ставления клеток растительных и жи­вотных организмов. Он установил, что хотя клетки животных крайне разно­образны и значительно отличаются от клеток растений, ядра во всех клетках обладают большим сходством. Если в каком-либо видимом под микроскопом образовании присутствует ядро, это образование, по мнению Шванна, мож­но считать клеткой. Основываясь на таком критерии, Шванн выдвинул основные положения клеточной теории: 1) клетка является главной структур­ной единицей всех организмов (рас­тительных и животных); 2) процрсс образования клеток обусловливает рост, развитие и дифференцировку рас­тительных и животных тканей.

Развитие клеточной теории Р. Вирховом. В 1858 г. вышел в свет основной труд немецкого патолога Р. Вирхова (1821—1902) «Целлюлярная патология». Это произведение, ставшее классическим, оказало, влия­ние на дальнейшее развитие учения о клетке и для своего времени имело большое прогрессивное значение. До Вирхова основу всех патологических процессов видели в изменении состава жидкостей и борьбе нематериальных сил организма. Вирхов подошел к объ­яснению патологического процесса материалистически, показав связь его в организме с морфологическими струк­турами, с определенными изменениями в строении клеток. Это исследование положило начало новой науке — па­тологии, которая является основой теоретической и клинической медици­ны. Вирхов ввел в науку ряд новых представлений о роли клеточных струк­тур в организме.

Положение Вирхова «каждая клетка из клетки» — блестяще подтвердилось дальнейшим развитием биологии. В на­стоящее время неизвестны иные способы появления новых клеток, помимо деле­ния уже существующих. Однако этот тезис не отрицает того факта, что на заре жизни клетки развились из обра­зований, еще не имевших клеточной структуры.

 

Положение Вирхова о том, что вне клеток нет жизни, тоже не потеряло своего значения. В многоклеточном организме имеются неклеточные струк­туры, но они — производные клеток. Примитивные организмы — вирусы — приобретают способность к активным процессам жизнедеятельности и раз­множению лишь после проникновения в клетку.

Важным обобщением явилось также утверждение, что наибольшее значение в жизнедеятельности клеток имеют не оболочки, а их содержимое: прото­плазма и ядро.

Однако представления Вирхова не были лишены ошибок. Уже у Шванна проявилась тенденция рассматривать организмы как своеобразную сумму составляющих их клеток. Вирхов и особенно его последователи не только не отказались от этого положения, но и развили его дальше. Так, известный немецкий зоолог-дарвинист Э. Геккель (1834—1919) рассматривал всякий мно­гоклеточный организм как некое «госу­дарство» клеток, в котором каждая клетка «живет» своей самостоятельной жизнью. Отсюда вытекало ошибочное мнение, что патологический процесс в организме представляет собой сумму нарушении жизнедеятельности отдельных клеток, что это —локальный (мест­ный) процесс.

Вирхов и его последователи не виде­ли также качественного различия меж­ду частью и целым, рассматривая орга­низм вне его исторического развития и условий существования. Вирховскую концепцию критиковали русские есте­ствоиспытатели и клиницисты И. М. Сеченов (1829—1905), С. П. Боткин (1832—1889) и И. П. Павлов (1849— 1936). И. М. Сеченов уже в 1860 г. от­метил, что Вирхов изучает организм оторвано от среды, а органы — от организма. Русские клиницисты и фи­зиологи своими исследованиями пока­зали, что организм — единое целое и что интеграция его частей осуществля­ется, в первую очередь, нервной систе­мой. И. П. Павлов установил ведущую координирующую роль центральной нервной системы в организме. Оказа­лось, что обмен веществ, питание орга­нов и клеток находятся также под контролем нервной системы.

В настоящее время наука располага­ет большим фактическим материалом, убеждающим в том, что не только про­цессы жизнедеятельности, но также форма и величина клеток, как и другие морфологические особенности каждой клетки, связаны с теми процессами, которые протекают в организме. Един­ство частей целого обусловлено нервной и гуморальной регуляцией.

В целом появление «Целлюлярной патологии» Вирхова следует рассмат­ривать как важную веху в истории био­логии и медицины. Освобожденная от механистических ошибок и дополненная позднейшими открытиями, она легла в основу современных представлений о клеточном строении организма.

Прокариоты — доядерные ор­ганизмы, не имеющие типичного ядра, заключенного в ядерную мембрану. Генетический материал представлен единственной нитью ДНК, образующей кольцо,— генофором. Эта нить не приобрела еще сложного строения, характерного для хромосом, в ней нет белков-гистонов. Деление клетки толь­ко амитотическое. В клетке прокариотов отсутствуют митохондрии, центриоли, пластиды, развитая система мембран. Из организмов, имеющих клеточное строение, наиболее примитивны мико­плазмы. Это бактериоподобные су­щества,

 

ведующие паразитический или сапрофитный образ жизни. По разме­рам микоплазма приближается к виру­сам. Самые мелкие клетки микоплаз-мы крупнее вируса гриппа, но мельче вируса коровьей оспы. Так, если вирус гриппа имеет диаметр от 0,08 до 0,1 мкм, а вирус коровьей оспы — от 0,22 до 0,26 мкм, то диаметр «клеток» микоплазмы — возбудителя поваль­ного воспаления легких рогатого ско­та — от 0,1 до 0,2 мкм.

В отличие от вирусов, осуществляю­щих процессы жизнедеятельности толь­ко после проникновения в клетки, микоплазма способна проявлять жизне­деятельность, свойственную организ­мам, имеющим клеточное строение. Эти бактериоподобные существа могут рас­ти и размножаться на синтетической среде. Их «клетка» построена из срав­нительно небольшого числа молекул (около 1200), но имеет полный набор макромолекул, характерных для любых клеток (белки, ДНК и РНК) и содер­жит около 300 различных ферментов.

По некоторым признакам «клетки» микоплазмы ближе стоят к клеткам животных, чем растений. Они не имеют жесткой оболочки, окружены гибкой мембраной; состав липидов близок к таковому клеток животных.

Как уже сказано, к прокариотам относятся бактерии и синезеленые во­доросли, объединяемые общим терми­ном «дробянки». Клетка типичных дро­бянок покрыта оболочкой из целлю­лозы. Дробянки играют существенную роль в круговороте веществ в природе: синезеленые водоросли — как синте­тики органического вещества, бакте­рии — как минерализирующие его. Многие бактерии имеют медицинское и ветеринарное значение как возбудите­ли заболеваний.

Эукариоты — ядерные орга­низмы, имеющие ядро, окруженное ядерной мембраной. Генетический ма­териал сосредоточен преимущественно в хромосомах, имеющих сложное строе­ние и состоящих из нитей ДНК и бел­ковых молекул. Деление клеток митоти-ческое. Имеются центриоли, митохонд­рии, пластиды. Среди эукариотов су­ществуют как одноклеточные, так и многоклеточные организмы.

 

 

(4) Структура и функция компонентов клетки. Как правило, клетки обладают микроскопическими размерами. Части клетки, выполняющие различные функ­ции,— органоиды — имеют микроскопи­ческие и субмикроскопические разме­ры. Диаметр большинства клеток ко­леблется от 0,01 до 0,1 мм (или от 10 до 100 мкм). Диаметр самых мелких клеток животных равен 4 мкм. Объем большинства клеток человека нахо­дится в пределах 200—15 000 мкм3. Однако известны и очень крупные клет­ки, видимые невооруженным глазом. Величина клеток зависит от выполняе­мых ими функций. Так, яйцеклетки благодаря накоплению в них пита­тельных веществ достигают больших размеров. У многих растений (арбуз, помидор, лимон и др.) крупные раз­меры имеют клетки плодов, включаю­щие вакуоли с клеточным соком.

Размеры клеток прямо не связаны с величиной организма. Так, клетки пе­чени и почек у лошади, крупного скота и мыши имеют примерно одинаковую величину. Величина органов, как и размеры целого организма животных и растений, зависит от числа клеток.

Форма клеток также обусловлена выполняемыми ими функциями. Мы­шечные клетки вытянуты. Клетки по­кровной ткани многоугольны. Нервные клетки благодаря большому числу от­ростков приобрели звездчатую форму. Свободно подвижные лейкоциты имеют округлую и могут принимать амебоид­ную форму и т. д.

Число клеток, строящих организм, разнообразно: от одной (у протестов) или небольшого числа (у коловраток и круглых червей) до многих миллиар­дов, как у большинства многоклеточ­ных.

Структурные компоненты цитоплаз­мы. Строение клеток животных и расте­ний в основных чертах сходно. В теле клетки — протоплазме — различают цитоплазму и кариоплаз­му. Цитоплазма и кариоплазма (яд­ро) — обязательные составные части клетки. При удалении ядра клетка длительно существовать не может; точно так же ядро, выделенное из клет­ки, погибает.

Цитоплазма составляет основную массу клетки. При рассматривании живой клетки в световом микроскопе цитоплазма представляется гомогенной, бесцветной, прозрачной вязкой жидко­стью. Однако электронный микроскоп позволил увидеть тонкую структуру цитоплазмы (рис. 2.2). В цитоплазме различают гиалоплазу — цитоплазматический матрикс, органоиды и вклю­чения.

Цатоплазматаческий мат­рикс. Основное вещество клетки состав­ляет цитоплазматический матрикс, или гиалоплазма. С ним связаны коллоид­ные свойства цитоплазмы, ее вязкость, эластичность, сократимость, внутреннее движение. По химическому составу ци­топлазматический матрикс построен преимущественно из белков; в состав его входят ферменты. Под электронным микроскопом цитоплазматическиймат-рикс представляется однородным тон­козернистым веществом. Иногда обна­руживаются тонкие нити (толщиной менее 10 нм) или пучки их. Даже в од­ной клетке разные участки цитоплазматического матрикса могут иметь неоди­наковую макромолекулярную струк­туру.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 450; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.045 сек.