КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод корреляционных полей
Метод корреляционных таблиц. Метод групповых таблиц. Групповыми называются таблицы, имеющие в подлежащем группировку единиц совокупности по одному признаку.
Корреляционный анализ — это количественный метод определения тесноты и направления взаимосвязи между выборочными переменными величинами. Линейная корреляция: Данная корреляция характеризует линейную взаимосвязь в вариациях переменных. Она может быть парной (две коррелирующие переменные) или множественной (более двух переменных), прямой или обратной — положительной или отрицательной, когда переменные варьируют соответственно в одинаковых или разных направлениях. Если переменные — количественные и равноценные в своих независимых наблюдениях Коэффициент парной корреляции знаков Фехнера определяет согласованность направлений в индивидуальных отклонениях переменных
Величина Кф изменяется от -1 до +1. Суммирование в (1) производится по наблюдениям Таблица 12.1 Данные для расчета коэффициента Фехнера.
По (1) имеем Кф = (3 — 2)/(3 + 2) = 0,20. Направление взаимосвязи в вариациях!!Средняя численность работников|численности работников]] и объема товарооборота — положительное (прямолинейное): знаки в отклонениях и Коэффициенты парной, чистой (частной) и множественной (совокупной) линейной корреляции Пирсона, в отличие от коэффициента Фехнера, учитывают не только знаки, но и величины отклонений переменных. Для их расчета используют разные методы. Так, согласно методу прямого счета по несгруппированным данным, коэффициент парной корреляции Пирсона имеет вид:
Этот коэффициент также изменяется от -1 до +1. При наличии нескольких переменных рассчитывается коэффициент множественной (совокупной) линейной корреляции Пирсона. Для трех переменных x, y, z он имеет вид
Этот коэффициент изменяется от 0 до 1. Если элиминировать (совсем исключить или зафиксировать на постоянном уровне) влияние
Этот коэффициент изменяется от -1 до +1. Квадраты коэффициентов корреляции (2)-(4) называются коэффициентами (индексами) детерминации — соответственно парной, чистой (частной), множественной (совокупной):
Каждый из коэффициентов детерминации изменяется от 0 до 1 и оценивает степень вариационной определенности в линейной взаимосвязи переменных, показывая долю вариации одной переменной (y), обусловленную вариацией другой (других) — x и y. Многомерный случай наличия более трех переменных здесь не рассматривается. Согласно разработкам английского статистика Р.Э. Фишера (1890-1962), статистическая значимость парного и чистого (частного) коэффициентов корреляции Пирсона проверяется в случае нормальности их распределения, на основании
Для чистого коэффициента корреляции Если tr > tтабл., то коэффициент парной корреляции — общий или чистый является статистически значимым, а при tr ≤ tтабл. — незначимым. Значимость коэффициента множественной корреляции R проверяется по F — критерию Фишера путем расчета его фактического значения
При FR > Fтабл. коэффициент R считается значимым с заданным уровнем значимости a и имеющихся степенях свободы В совокупностях большого объема n > 100 для оценки значимости всех коэффициентов Пирсона вместо критериев t и F применяется непосредственно нормальный закон распределения (табулированная функция Лапласа-Шеппарда). Наконец, если коэффициенты Пирсона не подчиняются нормальному закону, то в качестве критерия их значимости используется Z — критерий Фишера, который здесь не рассматривается. Условный пример расчета (2) — (7)дан в табл. 12.2, где взяты исходные данные табл.12.1 с добавлением к ним третьей переменной z — размера общей площади магазина (в 100 кв. м). Таблица 12.2. Подготовка данных для расчета коэффициентов корреляции Пирсона
Согласно (2) — (5), коэффициенты линейной корреляции Пирсона равны:
Взаимосвязь переменных x и y является положительной, но не тесной, составляя по их парному коэффициенту корреляции величину Коэффициенты детерминации dxy =0,354 и dxy.z = 0,0037 свидетельствуют, что вариация у (товарооборота) обусловлена линейной вариацией x (численности работников) на 35,4% в их общей взаимосвязи и в чистой взаимосвязи — только на 0,37%. Такое положение обусловлено значительным влиянием на x и y третьей переменной z — занимаемой магазинами общей площади. Теснота ее взаимосвязи с ними составляет соответственно rxz=0,677 и ryz=0,844. Коэффициент множественной (совокупной) корреляции трех переменных показывает, что теснота линейной взаимосвязи x и z c y составляет величину R = 0,844, оцениваясь по шкале Чеддока как "высокая", а коэффициент множественный детерминации — величину D=0,713, свидетельствуя, что 71,3 % всей вариации у (товарооборота) обусловлены совокупным воздействием на нее переменных x и z. Остальные 28,7% обусловлены воздействием на y других факторов или же криволинейной связью переменных y, x, z. Для оценки значимости коэффициентов корреляции возьмем уровень значимости
Все расчетные критерии меньше своих табличных значений: все коэффициенты корреляции Пирсона статистически незначимы.
Построение корреляционных полей - графическое изображение функций от фактора с целью предварительного определения тесноты и формы связи между функцией и каждым фактором. Корреляционные поля построены по исходным статистическим данным X1 — Х4 (факторы) и Y (функция). Анализ корреляционных полей показывает, что: · между Y и X4 теснота связи слабая, по форме она линейная, обратно пропорциональная; · между Y и Х1 теснота связи высокая, по форме она линейная, прямо пропорциональная; · между Y и Х3 связи нет, т.к. функцию Y = f(X3) можно провести в любом направлении; · между Y и Х4 теснота связи высокая, форма связи — гиперболическая, после линии А—А фактор Х4 на Y уже не оказывает влияния. Корреляционное поле и корреляционная таблица являются исходными данными при корреляционном анализе. Пусть
Дата добавления: 2015-04-24; Просмотров: 664; Нарушение авторских прав?; Мы поможем в написании вашей работы! |