Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Звуковые волны




Стоячие волны

22) Ма́ятник — система, подвешенная в поле тяжести и совершающая механические колебания. Колебания совершаются под действием силы тяжести, силы упругости и силы трения. Во многих случаях трением можно пренебречь, а от сил упругости (либо сил тяжести) абстрагироваться, заменив их связями.

Метал - серебро, золото, железо, медь, олово, хром, латунь, бронза, алюминий, титан.

ñДерево – машинной или ручной работы.

ñГлина - антропогенной полимерной глины и естественной глины.

ñСтекло – обрезное, дутое, формовочного и т.д.

ñКамень - черный обсидиан, розовый кварц, оранжевый кальцит, прозрачный кварц, содалит, аметист, цитрин, сердолик, гранат, горный хрусталь, янтарь.

ñСемян, слоновая кость.

ñПластика.

Период колеба́ний — наименьший промежуток времени, за который осциллятор совершает одно полное колебание (то есть возвращается в то же состояние[1], в котором он находился в первоначальный момент, выбранный произвольно).

Раздел 2

1)основными положениями МКТ являются следующие три утверждения.

1. Любое вещество состоит из мельчайших частиц — молекул и атомов. Они расположены в

пространстве дискретно, то есть на некоторых расстояниях друг от друга.

2. Атомы или молекулы вещества находятся в состоянии беспорядочного движения которое никогда не прекращается.

3. Атомы или молекулы вещества взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами.

Возьмём бумажный листок и начнём делить его на всё более и более мелкие части. На каждом

ли шаге мы будем получать кусочки именно бумаги, или на каком-то этапе появится нечто

новое?

Первое положение МКТ говорит нам о том, что вещество не является делимым до беско-

нечности. Рано или поздно мы дойдём до «последнего рубежа» — мельчайших частиц данного

вещества. Эти частицы — атомы и молекулы. Их также можно разделить на части, но тогда

исходное вещество прекратит своё существование.

Атом — это наименьшая частица данного химического элемента, сохраняющая все его

химические свойства. Химических элементов не так много — все они сведены в таблицу Мен-

делеева.

Молекула — это наименьшая частица данного вещества (не являющегося химическим эле-

ментом), сохраняющая все его химические свойства. Молекула состоит из двух или более атомов

одного или нескольких химических элементов.

2)Молекулы очень малы, обычные молекулы невозможно рассмотреть даже в самый сильный оптический микроскоп

Молекулярные массы сложных молекул можно определить, просто складывая молекулярные массы входящих в них элементов. Например, молекулярная масса воды (H2O) есть

M H2O = 2 M H + M O ≈ 2·1+16 = 18 а. е. м.

3) Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекулможно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

ñДиаметр молекулы пренебрежимо мал по сравнению со средним расстоянием между ними () [6][7].

ñИмпульс передается только при соударениях то есть, силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях.

ñСуммарная энергия частиц газа постоянна если нет передачи тепла или совершения газом работы.

 

Основное уравнение МКТ

4) Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

Термо́метр (греч. θέρμη — тепло; μετρέω — измеряю) — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

ñжидкостные

ñмеханические

ñэлектрические

ñоптические

ñгазовые

ñинфракрасные

 

5)Уравнение состояния идеального газа

— давление — абсолютная температура -универсальная газовая постоянная, — масса, —молярная масса

6) ИЗОБАРНЫЙ ПРОЦЕСС ()
Для изобарного процесса в идеальном газе справедлив закон Гей-Люссака:
при постоянном давлении объем данной массы газа прямо пропорционален его термодинамической температуре:
или .при постоянной массе и неизменном давлении объем прямо пропорционален его температуре

ИЗОХОРНЫЙ ПРОЦЕСС ()
Изохорный процесс в идеальном газе описывается законом Шарля:
при постоянном объеме давление данной массы газа прямо пропорционально его термодинамической температуре:
или . процесс в газе который происходит при постоянной массе и неизменном объеме, называется изохорическим

ИЗОТЕРМИЧЕСКИЙ ПРОЦЕСС ()
Изотермический процесс в идеальном газе подчиняется закону Бойля - Мариотта:
для данной массы газа при неизменной температуре произведение значений давления и объема есть величина постоянная:
или . при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему

Для описания состояния газа достаточно задать три макроскопических параметра — объем V, давление p и температуру T. Изменение одного из этих параметров вызывает изменение остальных. Если одновременно меняются объем, давление и температура, то на опыте трудно установить какие-либо закономерности. Проще сначала рассмотреть газ неизменной массы (m = const), зафиксировать значение одного из макропараметров (V, p или T) и рассмотреть изменение при этом двух других.

 

 

7)Гораздо более сложным представляется строение жидкостей. Чтобы подойти к этому вопросу, рассмотрим случай, когда в замкнутом сосуде имеется жидкость и ее пар, причем жидкость занимает только часть сосуда (нижнюю); остальное пространство заполнено паром (рис. 396), который, как и всякий газ, заполняет все свободное пространство. Конечно, молекулы и в паре и в жидкости находятся в непрерывном движении и могут вылетать из жидкости и переходить в пар и, обратно, из пара залетать в жидкость. Однако между паром и жидкостью сохраняется (при неизменной температуре) резкая граница, и обмен молекулами не нарушает равновесия между этими двумя состояниями; только это равновесие имеет подвижный (динамический) характер.

Резкая граница между паром и жидкостью разделяет два состояния, или, как говорят, две фазы вещества, из которых парообразная характеризуется гораздо меньшей (в тысячи раз) плотностью, чем жидкая. В жидкой фазе среднее расстояние между молекулами гораздо меньше (в десятки раз), чем в паре, и в соответствии с этим межмолекулярные силы сцепления в жидкости гораздо больше, чем в паре.

8)Твердое тело — агрегатное состояние вещества, характеризующееся постоянством формы и характером движения атомов, которые совершают малые колебания около положений равно­весия

Кристаллические тела. Твердое тело в обычных условиях трудно сжать или растянуть. Для придания твердым телам нужной формы или объема на заводах и фабриках их обрабатывают на специальных станках: токарных, строгальных, шлифовальных.

Монокристалл — твердое тело, частицы которого образуют единую кристаллическую решетку (одиночный кристалл).

Поликристалл — твердое тело, состоящее из беспорядочно ориентированных монокристаллов. Поликристаллическими являются большинство твердых тел, с которыми мы имеем дело в быту — соль, сахар, различные металлические изделия. Беспорядочная ориентация сросшихся микрокристалликов, из которых они состоят, приводит к исчезновению анизотропии свойств.

аморфные тела — это твердые тела, для которых характерно неупорядоченное расположение частиц в пространстве.

9) Насы́щенный пар — это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава.

Давление насыщенного пара связано определённой для данного вещества зависимостью от температуры. Когда внешнее давление падает ниже давления насыщенного пара, происходит кипение (жидкости) или возгонка (твёрдого тела); когда оно выше — напротив, конденсация или десублимация.

Ненасыщенный пар — пар, не достигший термодинамического равновесия со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше.

10)Влажность воздуха — это величина, характеризующая содержание водяных паров в атмосфере Земли, одна из наиболее существенных характеристик погоды и климата.

Влажность воздуха в земной атмосфере колеблется в широких пределах. Так, у земной поверхности содержание водяного пара в воздухе составляет в среднем от 0,2 % по объёму в высоких широтах до 2,5 % в тропиках.

Измерение влажности определяется высушиванием влаги и титрованием влаги по Карлу Фишеру. Эти способы являются первичными. Помимо них разработано множество других, которые калибруются по результатам измерений влажности первичными способами и по стандартным образцам влажности.

Для измерения влажности воздуха используют измерительные приборы - гигрометры.
Существуют несколько видов гигрометров, но основные: волосной и психрометрический.

11) Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сма́чивание — это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой жидкости. Смачивание бывает двух видов:

ñ Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью)

ñ Контактное (состоит из трёх фаз — твердая, жидкая, газообразная)

Если жидкость контактирует с твёрдым телом, то существуют две возможности:

1.молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого тела.

2.молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого тела.

12) Парообразование — свойство капельных жидкостей изменять свое агрегатное состояние и превращаться в пар. Парообразование, происходящее лишь на поверхности капельной жидкости, называется испарением. Парообразование по всему объему жидкости называется кипением; оно происходит при определенной температуре, зависящей от давления. Давление, при котором жидкость закипает при данной температуре, называется давлением насыщенных паров , его значение зависит от рода жидкости и ее температуры.

Испарение, переход вещества из жидкого или твёрдого агрегатного состояния в газообразное — пар. Обычно под Испарение понимают переход жидкости в пар, происходящий на свободной поверхности жидкости. Испарение твёрдых тел называется возгонкой или сублимацией. Вследствие теплового движения молекул И. возможно при любой температуре, но с возрастанием температуры, т. е. интенсивности теплового движения молекул, скорость Испарение Увеличивается. Кипе́ние — процесс парообразования в жидкости (переход вещества из жидкого в газообразное состояние), с возникновением границ разделения фаз. Температура кипения при атмосферном давлении приводится обычно как одна из основных физико-химических характеристик химически чистого вещества.

Конденса́ция паров (лат. condense — уплотняю, сгущаю) — переход вещества в жидкое или твёрдое состояние из газообразного. Максимальная температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.

13)Внешнее механическое воздействие на тело вызывает смещение атомов из равновесных положений и приводит к изменению формы и объема тела, т. е. к его деформации. Самые простые виды деформации — растяжение и сжатие. Растяжение испытывают тросы подъемных кранов, канатных дорог, буксирные тросы, струны музыкальных инструментов. Сжатию подвергаются стены и фундаменты зданий. Изгиб испытывают балки перекрытий в зданиях, мостах. Деформация изгиба сводится к деформациям сжатия и растяжения, различным в разных частях тела.

14) Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 530; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.