КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Норма и диапазон реакции
Еще два понятия, овладение которыми чрезвычайно важно для правильного понимания отношений между генотипом и фенотипом, — это «норма реакции» и «диапазон реакции». Семантические поля этих двух понятий близки, однако между ними существуют весьма значимые различия. Описывая далее взаимоотношения между этими понятиями, мы сначала остановимся на том, что является для них общим, а затем — на их отличительных признаках. Общее в понятиях нормы и диапазона реакции заключается в следующем. Нормой (диапазоном) реакции данного генотипа называется система, описывающая множество фенотипов, существование которых потенциально возможно в том случае, если данный генотип будет находиться во взаимодействии с определенными средами. Понятия и нормы, и диапазона реакции предполагают, что каждый генотип ассоциируется с определенным, характерным для него, рядом фенотипов, формирующихся в разных средах. Различия в понятиях нормы и диапазона реакции состоят в следующем. Рассмотрим гипотетический пример, касающийся фенотипи-ческого признака, который отражает какие-то специфические способности. Предположим, существует 4 генотипа (1, 2, 3, 4), и все эти генотипы могут быть одновременно помещены в разные типы сред, отличающиеся друг от друга по уровню разнообразия и обогащенности. По оси абсцисс отложены «уровни» среды, а по оси ординат — условные фенотипические значения. В обедненной среде разброс фенотипических значений относительно мал, и четыре генотипа проявляются в фенотипах, мало отличающихся друг от друга. Разброс фенотипических значений существенно возрастает в типичной среде и достигает максимума в среде обогащенной. Разница между значениями данного генотипа в обедненной и обогащенной средах называется диапазоном реакции этого генотипа. Обратите внимание: понятие диапазона реакции подразумевает сохранение рангов фенотипических значений генотипов в разных средовых условиях. Например, Генотип 1 ассоциируется с низкими фенотипическими значениями и в обедненной, и в обогащенной средах, в то время как Генотип 4 является наиболее «процветающим» в любой среде. Соответственно, диапазон реакции Генотипа 1 — наименьший, а диапазон реакции Генотипа 4 — наибольший. Иными словами, основным допущением при интерпретации понятия «диапазон реакции» служит следующее предположение: существующие генотипы отличаются друг от друга таким образом, что фенотипические преимущества каждого из этих генотипов постоянны, а фенотипические различия, ассоциируемые с каждым из генотипов, становятся все более заметны по мере того, как среда становится все более благоприятной для развития данного фенотипического признака. Если взять в качестве примера математические способности, то носители Генотипа4 будут демонстрировать наивысшие значения как в обедненной, так и в обогащенной среде, причем чем благоприятнее среда, тем выше уровень математических достижений. Напротив, носители Генотипа1 будут иметь наименьшие фенотипические значения в любой среде, а фенотипические изменения, характеризующие этот фенотип при переходе из одних средовых условий в другие, будут незначительны. Добавим к изучаемым нами генотипам два новых — Генотип5 и Генотип6. Оказывается, что поведение этих двух генотипов в разных средах не соответствует ожиданиям о сохранении ранговых мест фенотипических выражений разных генотипов в варьирующих средовых условиях. Максимальное феноти-пическое значение Генотипа5 наблюдается в типичной среде, в то время как обогащенная среда не является благоприятной для этого генотипа — его фенотипическое значение уменьшается. В качестве возможной иллюстрации данного феномена может быть использован хорошо известный из психологии развития факт: излишняя когнитивная стимуляция многих (но не всех) младенцев часто приводит не к оптимизации, а к расстройству их познавательной деятельности. Генотип6, напротив, на переход от обедненной к типичной среде никак не реагирует, его фенотипическое значение остается неизменным. Однако ситуация существенно меняется при изменении средовых условий на обогащенные: фенотипическое значение Генотипа6 резко и линейно возрастает. Примером подобной ситуации может служить развитие музыкальных способностей, поскольку ребенок, основываясь на своих природных задатках, должен овладеть мастерством, для обучения которому ему необходимо находиться в обогащенной среде, в то время как и обедненная, и типичная среды таких условий не дают. Таким образом, несколько упрощая ситуацию, можно сказать, что понятие нормы реакции — более общее понятие, поскольку, используя его, исследователь не должен делать никаких предположений о сохранении рангов фенотипов в разных средах. Для понятия же диапазона реакции допущение об определенном ранговом порядке фенотипов (и, соответственно, генотипов) в контексте разных средовых условий является критическим. В силу большей широты понятия нормы реакции далее в учебнике будет использоваться именно это понятие. «Норма реакции» является понятием по своей природе интерак-ционистским, т.е. подчеркивающим идею взаимодействия вовлеченных в развитие факторов генотипа и среды. Конкретный фенотип представляет собой реализацию конкретного генотипа в конкретных средовых условиях в соответствии с его нормой реакции, и процесс этого взаимодействия чрезвычайно сложен. Любое искусственное расчленение и квалификация генотипических и средовых влияний на формирующийся организм является его упрощением, и это необходимо помнить при интерпретации психогенетических данных.
11.1. Генетическая структура популяций.
Популяция – это: – самовоспроизводящаяся группировка особей одного вида, – более или менее изолированная от других подобных группировок, – населяющая определенный ареал в течение длительного ряда поколений, – образующая собственную генетическую систему, – формирующая собственную экологическую нишу Любая популяция представляет собой непрерывный поток поколений благодаря обмену генами, который происходит в результате скрещивания особей друг с другом. Признаки, появившиеся в ходе независимого комбинирования генов, определяют формирование фенотипа организмов и обусловливают изменчивость в популяции. В ходе естественного отбора адаптивные фенотипы сохраняются, а неадаптивные исчезают. Так формируется генетическая реакция всей популяции, которая определяет выживание данного вида. Только те особи популяции, которые выжили и оставили потомство, вносят вклад в будущее своего вида. Популяция включает огромное количество разнообразных генов, которые образуют ее генофонд. Каждый ген может существовать в нескольких формах называемых аллелями. Число особей в конкретной популяции, несущих определенный аллель, определяет частоту данного аллеля. Например, частота рецессивного аллеля отсутствия пигментации кожи (альбинизма) человека составляет 1 % (или 0,01), а доминантного аллеля, определяющего нормальную пигментацию кожи, 99 % (или 0,99). Если обозначить символом р частоту доминантного аллеля, а символом q — рецессивного аллеля, то р + q = 1, т.е. 0,99 + 0,01 = 1. Зная частоту одного аллеля, по этому уравнению легко определить частоту другого. Если известны частоты отдельных аллелей в генофонде популяции, можно рассчитать и частоты контролируемых аллелями одного гена генотипов. 11.2. Идеальная популяция. Идеальная популяция характеризуется: – стационарностью, – бесконечно большой численностью, – панмиксией, равноправием женских и мужских гамет, – отсутствием мутаций, – отсутствием естественного отбора, – полной изолированностью от других популяций данного вида.
В идеальной популяции соблюдаются пять условий: 1) новые мутации в данной популяции не появляются; 2) популяция полностью изолирована, т. е. нет миграции особей - носителей генов в популяцию (иммиграция) и из популяции (эмиграция); 3) популяция бесконечно велика, к ней можно применять законы вероятности, т. е. когда в высшей степени маловероятно, что одно случайное событие может изменить частоты аллелей; 4) скрещивания случайны, т. е. происходит чисто случайное образование родительских пар - панмиксия; 5) все аллели равно влияют на жизнеспособность гамет. Генетическая структура идеальной популяции
Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы и др.). Для описания генетической структуры популяций используются термины «аллелофонд» и «генофонд». Аллелофонд популяции – это совокупность аллелей в популяции. В простейшем случае рассматриваемый признак определяется двумя аллелями одного гена: А и а. Основоположник учения о генофонде и геногеографии Александр Сергеевич Серебровский называл генофондом «совокупность всех генов данного вида..., чтобы подчеркнуть мысль о том, что в лице генофонда мы имеем такие же национальные богатства, как и в лице наших запасов угля, скрытых в наших недрах». Однако это выражение в настоящее время обычно используется как определение генетического потенциала. В популяционной генетике генофондом называют совокупность всех генотипов в популяции. 11.3. Закон Харди-Вайнберга. В 1908 г. независимо друг от друга английский математик Г. Харди и немецкий врач В. Вайнберг нашли математическую зависимость между частотами аллелей и частотами генотипов. Сформулированная ими зависимость позже была названа равновесием (правилом) Харди—Вайнберга: частоты доминантного и рецессивного аллелей в данной популяции остаются постоянными из поколения в поколение, или, другими словами, соотношение между гомо- и гетерозиготами в популяции равное. В идеальной стационарной панмиктической популяции существует постоянное соотношение относительных частот аллелей и генотипов, которое при моногенном диаллельном определении признака описывается уравнением:
(pA+qa)2= р 2 АА+ 2 р∙qAa+q 2 aa= 1
Коэффициенты р 2, р∙q и q 2 представляют собой ожидаемые относительные частоты каждого генотипа. Если известны относительные частоты аллелей p и q и общая численность популяции N общ, то можно рассчитать ожидаемую, или расчетную абсолютную частоту (то есть численность особей) каждого генотипа. Для этого каждый член уравнения нужно умножить на N общ:
p 2 AAN общ + 2 p·qAaN общ +q 2 aaN общ =N общ
В данном уравнении:
p 2 AAN общ– ожидаемая абсолютная частота (численность) доминантных гомозигот АА 2 p Í qAaN общ – ожидаемая абсолютная частота (численность) гетерозигот Аа q 2 aaN общ– ожидаемая абсолютная частота (численность) рецессивных гомозигот аа Выполнение закона Харди-Вайнберга в природных популяциях
Разумеется, идеальных популяций в природе не существует. Однако в большинстве изученных популяциях закон Харди-Вайнберга выполняется с высокой точностью, поскольку… – численность природных популяций достаточно большая, – женские и мужские гаметы равноценны (то есть в большинстве случаев самцы и самки в равной степени передают свои аллели потомкам), – большинство генов не влияет на образование брачных пар, – мутации происходят достаточно редко, – естественный отбор не оказывает заметного влияния на частоту большинства аллелей, – большинство популяций в достаточной степени изолированы друг от друга.
Элементарные эволюционные факторы – это стохастические (вероятностные) процессы, протекающие в популяциях, которые служат источниками первичной внутрипопуляционной изменчивости.
К основным ЭЭФ относятся: мутационный процесс, рекомбинации и давление мутаций. Эти факторы обеспечивают появление в популяциях новых аллелей (а также хромосом и целых хромосомных наборов). К дополнительным ЭЭФ относятся: популяционные волны, изоляция, эффект основателя, дрейф генов. Эти факторы обеспечивают эффект генетической воронки, или эффект «бутылочного горлышка», способствующий изменению частот аллелей в популяции. К ЭЭФ относятся и другие процессы, способные изменить генетическую структуру популяции: миграции (поток генов), мейотический драйв и прочие. Мутация — это внезапное наследственное изменение, вызванное резким структурным и функциональным изменением генетического материала. Генетический материал организован в иерархию структурно-функциональных единиц — от молекулярных сайтов внутри гена до целых хромосом и геномов. Соответственно существуют разные типы мутаций — от генных до геномных. Эта глава посвящена в основном генным мутациям.
Дата добавления: 2015-04-24; Просмотров: 3824; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |