Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Характеристика статистического распределения. Мода. Медиана.




Графический метод в статистике. Элементы и классификация статистических графиков.

Расчет средних величин и показателей вариации методом условных (центральных) моментов.

Способ моментов

Часто мы сталкиваемся с расчетом средней арифметической упрощенным способом. В этом случае используются свойства средней величины. Метод упрощенного расчета называется методом условных (центральных) моментов, либо способом отсчета от условного нуля.

Способ моментов предполагает следующие действия:

1) Если возможно, то уменьшаются веса.

2) Выбирается начало отсчета – условный нуль. Обычно выбирается с таким расчетом, чтобы выбранное значение признака было как можно ближе к середине распределения. Если распределение по своей форме близко к нормальному, но за начало отсчета выбирают признак, обладающий наибольшим весом.

3) Находятся отклонения вариантов от условного нуля.

4) Если эти отклонения содержат общий множитель, то рассчитанные отклонения делятся на этот множитель.

 

   
 
Пример:

 

 

           
до 70     -30 -3 -45
70-80     -20 -2 -34
80-90     -10 -1 -13
90-100          
100-110          
110-120          
120-130          
130-140          
140 и более          
Сумма         -12

 

Сущность графического метода составляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости.

Если точки на графике расположены беспорядочно (а), то зависимость между изучаемыми признаками отсутствует.

Если точки на графике концентрируются вокруг прямой (б)/, зависимость между признаками прямая.

Если точки концентрируются вокруг прямой (в)\, то это свидетельствует о наличии обратной зависимости.

 

Существует множество видов графических изображений. Их классификация основана на ряде признаков, в основе которых;

• способ построения графического образа;

• геометрические знаки, изображающие статистические показа­тели;

• задачи, решаемые с помощью графического изображения.

Классификация статистических графиков по форме графического образа:

• Линейные (стат.кривые);

• Плоскостные (квадратные, секторные, точечные, фоновые и т.д.);

• Объемные (поверхностного распределения).

По способу построения статистические графики делятся на диаг­раммы и статистические карты.

А так же возможно построение Гистограммы(ось Х-интервалы, ось У - частости), Кумуляты (ось Х – накопленные частоты) и Огивы (где оси Х и У поменяны местами)

 

Стат ряд распр-я – упорядоченное распределение единиц совокупности на группы по определённому группировочному признаку.

2 вида: 1.Атрибутивные ряды – образованы по качественному признаку 2. Вариационные ряды – образованы по количественному признаку.(дискретные и интервальные вар.ряды – состоят из двух элементов: варианты и частоты)

Структурные средние величины.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

где - начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда.

в числителе должна быть ∑f

 

где — начальное значение интервала, содержащего медиану;

— величина медианного интервала;

— сумма частот ряда;

— сумма накопленных частот, предшествующих медианному интервалу;

— частота медианного интервала.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 366; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.