Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дуального обучения




ДНЕВНИК

Прикладний рівень моделі OSI

Пропускна здатність мережі. Теорема Шенона.

У даній теоремі визначено, що досягти максимальної швидкості (біт/с) можна шляхом збільшення смуги пропускання та потужності сигналу і, в той же час, зменшення шуму.

Теорема Шеннона — Хартлі обмежує інформаційну швидкість (біт/с) для заданої смуги пропускання і відношення «сигнал/шум». Для збільшення швидкості необхідно збільшити рівень корисного сигналу, відносно рівня шуму.

Якби існувала нескінченна смуга пропускання, бесшумовой аналоговий канал, то нею можна було б передати необмежену кількість безпомилкових даних за одиницю часу. Реальні канали мають обмежені розміри і в них завжди присутній шум.

Дивно, але не тільки обмеження смуги пропускання впливають на кількість переданої інформації. Якщо ми комбінуємо шум і обмеження смуги пропускання, ми дійсно бачимо, що є межа кількості інформації, яку можна було передати, навіть використовуючи багаторівневі методи кодування. У каналі, який розглядає теорема Шеннона — Хартлі, шум і сигнал доповнюють один одного. Таким чином, приймач сприймає сигнал, який дорівнює сумі сигналів, що кодує потрібну інформацію і безперервну випадкову, яка представляє шум.

Це доповнення створює непевність щодо цінності оригінального сигналу. Якщо приймач володіє інформацією про ймовірність непотрібного сигналу, який створює шум, то можна відновити інформацію у оригінальному вигляді, розглядаючи всі можливі впливи шумового процесу. У випадку теореми Шеннона — Хартлі шум, як такий, створений гаусівським процесом з деякими відхиленнями в каналі передачі. Такий канал називають сукупним білим гауссовских шумовим каналом, так як гауссовский шум є частиною корисного сигналу. «Білий» має на увазі рівність кількості шуму у всіх частотах у межах смуги пропускання каналу. Такий шум може виникнути при впливі випадкових джерел енергії, а також бути пов'язаний з помилками, що виникли при кодуванні. Знаючи про ймовірність виникнення гауссовского шуму, значно спрощується визначення корисного сигналу.

 

Верхній (7-й) рівень моделі, забезпечує взаємодію мережі й користувача. Рівень дозволяє додаткам користувача доступ до мережних служб, таким як обробник запитів до баз даних, доступ до файлів, пересиланню електронної пошти. Також відповідає за передачу службової інформації, надає додаткам інформацію про помилки й формує запити до рівня подання.

за 2курс 2014 - 2015 учебного года

 

Родители (законные представители) несовершеннолетнего обучающегося:

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 285; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.