КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Стационарностью, «отсутствием последействия» и ординарностью
Свойство "отсутствия последействия" состоит в том, что вероятность появления k событий в любом промежутке времени не зависит от того, появлялись или не появлялись события в моменты времени, предшествующие началу рассматриваемого промежутка. Другими словами, предыстория потока не влияет на вероятности появления событий в ближайшем будущем. Свойство ординарности состоит в том, что появление двух или более событий за малый промежуток времени практически невозможно. Другими словами, вероятность появления более одного со бытия за малый промежуток времени пренебрежимо мала по сравнению с вероятностью появления только одного события. Интенсивностью потока X называют среднее число событий, которые появляются в единицу времени. Если постоянная интенсивность потока % известна, то вероятность появления k событий простейшего потока за время t определяется формулой Пуассона
19 билет Интегральная теорема Лапласа. Имеет место следующее утверждение. Теорема. Пусть производится n независимых опытов, в каждом из которых вероятность наступления события А одна и та же и равна . Пусть m - число появления события A в n опытах. Тогда для достаточно больших n случайная величина m имеет распределение, близкое к нормальному с параметрами a=M(m)=np,
20 билет Однородный поток[править | править вики-текст] Основная статья: Поток однородных событий Поток заявок однороден, если: · все заявки равноправны, · рассматриваются только моменты времени поступления заявок, т.е. факты заявок без уточнения деталей каждой конкретной заявки. Поток без последействия[править | править вики-текст] Поток без последействия, если число событий любого интервала времени (, ) не зависит от числа событий на любом другом непересекающемся с нашим (, ) интервале времени. Стационарный поток[править | править вики-текст] Поток заявок стационарен, если вероятность появления n событий на интервале времени (, ) не зависит от времени , а зависит только от длины этого участка. Простейший поток[править | править вики-текст] Однородный стационарный поток без последействий является простейшим, потоком Пуассона. Число событий такого потока, выпадающих на интервал длины , распределено по Закону Пуассона: Пуассоновский поток заявок удобен при решении задач ТМО. Строго говоря, простейшие потоки редки на практике, однако многие моделируемые потоки допустимо рассматривать как простейшие.
21 билет Случайная величина — это величина, которая принимает в результате опыта одно значение из множества исходов, причём появление того или иного значения этой величины до её измерения нельзя точно предсказать. Формальное математическое определение следующее: пусть — вероятностное пространство, тогда случайной величиной называется функция ,измеримая относительно и борелевской σ-алгебры на . Вероятностное поведение отдельной (независимой от других) случайной величины полностью описывается её распределением. Случайные величины могут принимать дискретные, непрерывные и дискретно-непрерывные значения. Соответственно случайные величины классифицируют на дискретные, непрерывные и дискретно-непрерывные (смешанные). На схеме испытаний может быть определена как отдельная случайная величина (одномерная/скалярная), так и целая система одномерных взаимосвязанных случайных величин (многомерная/векторная). · Пример смешанной случайной величины — время ожидания при переходе через автомобильную дорогу в городе на нерегулируемом перекрёстке. · В бесконечных схемах (дискретных или непрерывных) уже изначально элементарные исходы удобно описывать количественно. Например, номера градаций типов несчастных случаев при анализе ДТП; время безотказной работы прибора при контроле качества и т. п. · Числовые значения, описывающие результаты опытов, могут характеризовать не обязательно отдельные элементарные исходы в схеме испытаний, но и соответствовать каким-то более сложным событиям. С одной стороны, с одной схемой испытаний и с отдельными событиями в ней одновременно может быть связано сразу несколько числовых величин, которые требуется анализировать совместно. · Например, координаты (абсцисса, ордината) какого-то разрыва снаряда при стрельбе по наземной цели; метрические размеры (длина, ширина и т. д.) детали при контроле качества; результаты медобследования (температура, давление, пульс и пр.) при диагностике больного; данные переписи населения (по возрасту, полу, достатку и пр.). Поскольку значения числовых характеристик схем испытания соответствуют в схеме некоторым случайным событиям (с их определёнными вероятностями), то и сами эти значения являются случайными (с теми же вероятностями). Поэтому такие числовые характеристики и принято называть случайными величинами. При этом расклад вероятностей по значениям случайной величины называется законом распределения случайной величины.
22 билет Случайная величина называется дискретной, если ее множество значений не более чем счетно, т.е. конечно или счётно. Любое пространство элементарных событий не являющееся дискретным, называется недискретным, и при этом, если наблюдаемыми результатами (нельзя произносить случайными событиями) являются точки того или иного числового арифметического или координатного пространства, то пространство называется непрерывным (континуум). Пространство элементарных событий вместе с алгеброй событий и вероятностью образует тройку , которая называетсявероятностным пространством. Законы распределения дискретных случайных величин.
Так как дискретная случайная величина имеет конечное или счётное множество значений, то их можно просто перечислить и указать соответствующие вероятности. Это можно сделать, например, в форме таблицы
где, - вероятность того, что X примет значение x .
Такую таблицу называют рядом распределения. События … несовместимы и в результате опыта одно из них обязательно происходит. Из этого следует
Для наглядности ряд распределения можно изобразить геометрически.
Для этого из каждой точки откладывают вверх отрезок равный .На рисунке изображен многоугольник распределения. Примеры дискретных сл.вел: 1). Индикатор события I. Эта случайная величина имеет закон распределения: Если вероятность появления события в некотором опыте равна p, то I принимает значение 1, если событие произошло, и значение 0, если событие не произошло. I можно назвать числом появлений события в одном опыте.
2). Биномиальный закон распределения. Случайная величина может принимать значения 0,1,2,…,n и каждому значению X=m соответствует вероятность , где p+q=1. Этот закон распределения считается заданным, если известны числа n и p, через которые выражаются все вероятности. Случайную величину подчинённою этому закону можно назвать числом появлении события в n независимых опытах. З). Пуассоновский закон распределения. Случайная велbчина имеет возможные значения 0,1,2,3,…… и каждому значению Х=m соответствует вероятность ,где - некоторый параметр, вероятностный смысл которого будет указан несколько страниц спустя. 4). Гипергеометрический закон распределения. Возможные значения X: 0,1,…,n. И каждому значению X=m соответствует вероятность P(X=m)=P = . Эта случайная величина, например, равна числу m бракованных изделий среди n взятых наугад из партии объёма N, содержащей M бракованных изделий. 5). Геометрический закон распределения.
q=1-p Если, например, p – вероятность изготовления бракованной детали, то случайная величина X с этим законом распределения будет равна общему числу деталей до момента изготовления первой бракованной детали. Построение ряда распределения удобно лишь для дискретных случайных величин, так как можно перечислить их все возможные значения.
23 билет
Распределения дискретных случайных величин Биномиальное распределение. Дискретная случайная величина Х имеет биномиальное распределение, если ее возможные значения 0, 1, 2,..., m, …, n, а соответствующие им вероятности равны: (21) где 0 < p < 1, q = 1 – p; m = 0, 1, 2,..., n. Как видно из (21), вероятности Рm вычисляются, как члены разложения бинома Ньютона , откуда и название «биномиальное распределение». Примером является выборочный контроль качества производственных изделий, при котором отбор изделий для пробы производится по схеме случайной повторной выборки, т.е. когда проверенные изделия возвращаются в исходную партию. Тогда количество нестандартных изделий среди отобранных есть случайная величина с биномиальным законом распределения вероятностей. Биномиальное распределение определяется двумя параметрами: n и p. Cлучайная величина, распределенная по биномиальному закону, имеет следующие основные числовые характеристики: (22)
24 билет Распределение Пуассона. Дискретная случайная величина Х имеет распределение Пуассона, если она имеет бесконечное счетное множество возможных значений 0, 1, 2,..., m, …, а соответствующие им вероятности определяются формулой: (23) Примерами случайных явлений, подчиненных закону распределения Пуассона, являются: последовательность радиоактивного распада частиц, последовательность отказов при работе сложной компьютерной системы, поток заявок на телефонной станции и многие другие.
25 билет
X_i = \left\{ Функция вероятности случайной величины Y имеет вид: \mathbb{P}(Y = n) = q^n p,\; n=0,1,2,\ldots
26 билет
27 вопрос
28 вопрос
29 вопрос
30 вопрос
Дата добавления: 2015-05-08; Просмотров: 1856; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |