Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Белки высокотемпературного шока




Стрессовые белки растений

Стрессовые белки выявлены практически во всех компартментах растительной клетки. Применение молекулярно-биологических методов позволило установить, что стрессовые белки растений гомологичны стрессовым белкам других эукариот. Их локализация в различных компартментах — ядрах, пластидах, митохондриях, эндоплазматическом ретикулуме, рибосомах, цитоплазме — свидетельствует об их существенной роли в важнейших биохимических процессах.

Жаростойкость достигается рядом приспособительных изменений метаболизма, в том числе возрастание вязкости цитоплазмы, увеличение содержания осмотически активных веществ, органических кислот, связывающих аммиак. Устойчивые к высокой температуре растения способны к синтезу более жароустойчивых белков-ферментов. На организменном уровне жароустойчивость связана с приспособлениями, направленными на уменьшение освещенности путем свертывания листьев или уменьшения их величины. При высоких температурах в клетках синтезируются специфические белки, толерантные к перегреву, и поэтому называемые белками теплового шока (БТШ).

Наиболее досконально на сегодня исследованы БТШ. Как известно, под действием высоких температур, помимо гранул теплового шока синтезируются новые растворимые белки. Классификация БТШ основана на особенностях кинетики синтеза и пространственного распределения белков, образующихся под действием теплового шока. Была предложена классификация, согласно которой класс А включает только растворимые белки с молекулярной массой основных полипептидов 95 и 80 кД, класс В — белки, связанные с гранулами на 5–10 % (70 и 68 кД), класс С — на 30–80 % (21, 17 и 15 кД), класс Д — минорные БТШ, идентифицированные исключительно в связанном состоянии. БТШ способны формировать класс-специфичные додекамеры с мол. массой 210–280 кД, которые образуют гранулы теплового шока (ГТШ). Последующие исследования, согласно которым основные классы БТШ различают по величине их молекулярных масс, а именно семейства БТШ 100, 90, 70, 60 и низкомолекулярные БТШ (от 17 до 30 кД), дополнили предложенную ранее систему.

Внутриклеточный механизм включения генома клетки в формирование реакции на стрессовое воздействие до конца не исследован, однако уже сегодня известно, что основными инициаторами синтеза БТШ являются неправильно модифицированные или денатурированные полипептиды и белковые агрегаты, возникающие вследствие негативной нагрузки.

Синтез БТШ - стрессовая программа, включаемая тепловым шоком. Он происходит при подъеме температуры на 8-100 С выше нормальной. Например, у широко применяемого в генетических и физиологических исследованиях растения арабидопсис (резушка Таля - Arabidopsis thaliana), с малым размером генома, синтез БТШ происходит при температуре 28-370 C, в листьях ячменя максимум синтеза БТШ достигается при 400 C, а в листьях риса - при 450 С. Необходимо заметить, что индукция синтеза отдельных представителей БТШ может различаться по температуре нагрева и его продолжительности. В результате можно различить ранние и поздние БТШ.

Переключение нормальной жизни клетки на стрессовую программу - событие чрезвычайное, которое осуществляется одновременно на многих уровнях регуляции. Оно включает в себя репрограммирование генома - тормозится экспрессия генов, активность которых характерна для жизни клетки в нормальных условиях, и активируются гены теплового шока. В результате в клетках растений, как и дрозофилы, мРНК, кодирующие БТШ, обнаруживаются через 5 мин от начала стресса. Тепловой шок вызывает не только репрограммирование генома и, следовательно, изменение состава вновь синтезируемых мРНК, но и репрограммирование рибосом - распад полисом, синтезирующих белки, типичные для нормальных условий обитания, и формирование полисом, синтезирующих БТШ. Такое стремительное включение синтеза БТШ не только на транскрипционном (синтез РНК на ДНК), но и на трансляционном (синтез белка на мРНК) уровне достигается в результате многих событий. Тепловой шок (ТШ) вызывает изменения в мРНК, синтезированных в клетке до шока, происходит модификация белковых факторов трансляции и рибосомных белков. Кроме того, мРНК БТШ имеют отличия от мРНК обычных белков. Все это обусловливает ослабление, а затем и прекращение синтеза обычных белков в клетках и переключение аппарата белкового синтеза на синтез БТШ. В результате БТШ обнаруживаются в клетках уже через 15 мин после начала теплового шока, их синтез активируется, достигая максимума за 2-4 ч ТШ, а затем начинает ослабевать.

Включение генов БТШ при высокой температуре определяется регуляторными элементами генов БТШ (РЭ БТШ), то есть специфическими нуклеотидными последовательностями ДНК в промоторной (регуляторной) зоне этих генов. РЭ сходны у генов разных представителей БТШ и обладают высокой гомологией у всех эукариот. Например, в промоторе гена БТШ70 кукурузы обнаружены два таких РЭ, близких РЭ БТШ70 дрозофилы. Это говорит о том, что не только структура БТШ, но и механизм включения их синтеза сохранил постоянство в эволюции.

РЭ ТШ включают гены БТШ после взаимодействия со специфическими регуляторными белками - факторами транскрипции или трансфакторами этих генов. Эти трансфакторы присутствуют в цитоплазме при нормальных условиях. Тепловой шок вызывает их модификацию, например увеличивается их фосфорилирование, после чего они приобретают способность взаимодействовать с РЭ генов БТШ и тем самым включать активность этих генов. К настоящему времени выявлены некоторые различия в механизмах активации тепловым шоком трансфакторов генов БТШ далеких эволюционно организмов. Однако важнее подчеркнуть принципиальную общность этих механизмов у всех эукариот. Лучше всего об этом говорит следующий факт. Введение в геном растительной клетки генетической конструкции, содержащей чужеродный репортерный ген (от "репортер" - дающий информацию), под контролем РЭ гена БТШ70 дрозофилы вызывало экспрессию этого репортерного гена при тепловом шоке в клетках растения. Следовательно, трансфактор генов БТШ, присутствующий в цитоплазме растительной клетки, узнавал в условиях теплового шока РЭ гена БТШ70 дрозофилы и включал экспрессию репортерного гена.

После окончания теплового шока синтез БТШ прекращается и возобновляется синтез белков, характерных для клетки в нормальных температурных условиях. При этом мРНК БТШ быстро разрушаются в клетках при нормальной температуре, тогда как сами белки могут сохраняться существенно дольше, обеспечивая, по-видимому, повышение устойчивости клеток к нагреву. Длительное пребывание клеток в условиях ТШ обычно также приводит к ослаблению и прекращению синтеза БТШ. В этом случае включаются механизмы регуляции экспрессии генов БТШ по принципу обратной связи. Накопление в клетках БТШ выключает активность их генов. Возможно, таким путем клетка поддерживает количество БТШ на необходимом уровне, препятствуя их сверхпродукции.

БТШ были открыты в 1962 г. у дрозофилы, потом у человека, затем у растений (1980 г.) и микроорганизмов. БТШ помогают клетке выжить при действии температурного стрессора и восстановить физиологические процессы после его прекращения. БТШ образуются в результате экспрессии определённых генов. У сои показано, что при температуре от 25 до 40°С синтезируются специфические мРНК, а через 3—5 мин после повышения температуры появляются белки. Клетки, способные к образованию таких белков устойчивы к высоким температурам. Некоторые из этих БТШ синтезируются не только при повышенной температуре, но и при других стресс-факторах, например, при недостатке воды, низких температурах, действии солей. Показано, что после действия одного стрессора клетки становятся устойчивыми к другим. Так, томаты после 48-часового действия 38°С выдерживали температуру 2°С 21 сутки.




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 978; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.