Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Шкала електромагнітних хвиль




Вектор густини потоку енергії електромагнітного поля дорівнює напрямок її перенесення збігається з векторним добутком а значить, і з швидкістю поширення хвилі, тобто визначається за пра­вилом правого гвинта. Цей вектор носить назву вектора Умова-Пойнтінга.

 

 

Як відомо, залежно від частоти або довжини хвилі c/v електромагнітні хвилі поділяють на радіохвилі, інфра­червоне випромінювання, видиме світло, ультрафіолетовевипромінювання, рентгенівські хвилі, ^-випромінювання. У таблиці 2.7 наведена частина спектра електромагнітного випромінювання. Розподіл електромагнітного випроміню­вання на окремі діапазони недостатньо чіткий, тому що в дійсності сусідні діапазони в значній мірі перекриваються.

Таблиця 2.7.

Таблиця 2.8.

Той факт, що різні діапазони частот випромінювання мають свої назви, не повинен закривати основну особли­вість електромагнітних хвиль - всі вони мають однакову природу, а відрізняються лише частотою. Радіохвилі, які

випромінюються антеною, повністю аналогічні за приро­дою до випромінювання, яке зароджується в атомному ядрі. Спосіб же взаємодії з речовиною визначальною мірою залежить від частоти. Наприклад, око чутливе лише до ви­димого світла, тоді як шкіра від уває ч інфрачервоне випромінювання. Радіохвилі затримуються тонкою метале­вою пластинкою, тоді як промені та рентгенівські прони­кають крізь неї. Величезна різноманітність проявів взаємодії електромагнітного поля з речовиною робить це випромінювання надзвичайно цікавим для використання у різних галузях, включаючи медицину.

Згідно з Міжнародним регламентом радіозв'язку радіо­хвилі ділять на дванадцять діапазонів (табл. 2.8).

З лікувальною метою в основному використовуються такі прояви взаємод ї електромагнітного поля з біологіч­ними системами (див. табл. 3.1):

- збудження (електростимуляція); для цієї мети викори­стовують, як правило, низькочастотні поля з імпульсами прямокутної, трапецієподібної, трикутної, експоненціальної форми;

- лікувальне прогрівання високочастотними полями; його механізм найбільш досконало вивчений. Серед ме­тодів високочастотної терапії розрізняють діатермію, індуктотермію, УВЧ, мікрохвильову терапію;

- специфічна дія; характерною особливістю її є реакція біологічних систем на надзвичайно низькі інтенсивності, котрі недостатні для збудження та прогрівання. Цей меха­нізм дії охоплює весь діапазон довжин хвиль і характери­зується високою селективністю (досить вузький діапа­зон частот Δv для того чи іншого типу клітин).

До специфічної дії відносять: зміну структури біоло­гічно активних молекул (білків, вуглеводів, нуклеїнових кислот), зміни в процесах переносу через мембрани (спо­творення роботи іонних насосів, зміна локальних концен­трацій іонів), зміни швидкості хімічних реакцій.

Електромагнітні поля можуть чинити як локальну, так і загальну дію на біооб'єкти залежно від частоти випромі­нювання. На частотах довжина хвилі λ пере­вищує 1 м. Дія такого випромінювання залежить від того, все тіло чи його частина знаходяться в полі. На більших частотах менша за розміри тіла людини, що й обумовлює лише локальну дію таких полів.

З підвищенням частоти зменшується глибина проник­нення електромагнітного поля в біологічні тканини (як і у всякі інші середовища). Глибиною проникнення елек­тромагнітного поля називають відстань, на якій амплітуда коливань зменшується в разів. Цій відстані відповідає зменшення інтенсивності на 87 відсотків. Глибина проникнення електромагнітних хвиль визначається не тільки частотою цих хвиль, а й здатністю даної тканини по­глинати енергію, яка, в свою чергу, залежить від будови тканини. Визначальним, в більшості випадків, є вміст моле­кул води. Для жирової та кісткової тканин глибина проник­нення на порядок (у десятки разів) більша, ніж для м'язової. Враховуючи складний характер біологічних тканин, вва­жають, що для хвиль сантиметрового діапазону см, а дециметрового діапазону

Якщо опромінення електромагнітними хвилями ведеть­ся дистанційно, то має місце часткове (яке може сягати 75%) відбивання хвилі від поверхні біологічної тканини. Ступінь відбивання залежить від різниці хвильових опорів середовища (повітря) та біологічної тканини. При контакт­ному опроміненні втратами потужності на відбиванні мож­на знехтувати.

2.6. СЕМІНАР "МЕТОДИКА ОДЕРЖАННЯ, РЕЄСТРАЦІЇ ТА ПЕРЕДАЧІ МЕДИКО-БЮЛОГІЧНОЇ ІНФОРМАЦІЇ"

 

Мета семінару, знайомство з принципами дії приладів, які дозволяють проводити виміри різноманітних електрич­них параметрів.

Контрольні питання для підготовки до семінару

1. Електричне поле і його основні характеристики (напруженість Е, потенціал зв'язок між ними).

2. Електричний диполь (дипольний момент, диполь в однорідному і неоднорідному електричному полі).

3. Електричне поле в речовині (поляризація та її види, відносна діелектрична проникність і поляризованість речовини, діелект­рична проникність біологічних тканин, сегнетоелектрики).

4. П'єзоелектричний ефект і його застосування.

5. Основні характеристики електричного струму (сила та густина струму, закони Ома та Джоуля-Ленца, питома електропровід­ність, рухливість вільних носіїв).

6. Магнітне поле і його основні характеристики (індукція В і напруженість магнітного поля). Закон Біо-Савара-Лапласа.

7. Дія магнітного поля на провідники зі струмом та рухомі електричні заряди (сила Ампера, сила Лоренца).

8. Магнітні властивості речовини (намагніченість, магнітна проник­ність). Діа, пара- і феромагнетики.

Додаткова література

1. Ремизов А.Н. Медицинская и биологическая физика. - М.: Выс­шая школа, 1996.

2. Ливенцев Н.М. Курс физики, ч. II. - М.: Высшая школа, 1978. -Гл. 6-Ю, с. 108-181.

3. Ремизов А.Н. Медицинская и биологическая физика. - М.: Выс­шая школа, 1987. - Разд. 4-5, с. 245-441.




Поделиться с друзьями:


Дата добавления: 2015-05-24; Просмотров: 2325; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.