КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Величини, що вивчаються в початкових класах. 4 страница
г) вирази на дві дії першого і другого ступенів, знаходження числових значень яких спирається на правила порядку виконання арифметичних дій (20 — 16: 2; 24: (3 • 2)), вирази на три і більше дій (9 • 8 + 9 • 3; 4038 • 97 - 2460: 60). Розкриємо суть роботи на кожному з цих етапів. Перший етап припадає на час вивчення додавання і віднімання в межах 10 та складання таблиць додавання і віднімання з переходом через десяток. У цей період знаки "+" і "—" у прикладах виду 2 + 3; 5 — 1 виступають лише як коротке позначення слів "додати" і "відняти". Це відтворюється в процесі читання: до числа два додати три, буде п'ять. У робочому плані вводять термін "приклад". Такі записи, як 2 + 1 = 3; 3 + 2 = 5, називають прикладами на додавання. Згодом діти дізнаються, що, додаючи кілька одиниць, збільшуємо число на стільки ж одиниць, а віднімаючи — зменшуємо його на стільки ж одиниць. Вводять також назви компонентів і результатів дій назви знаків дій "плюс" і "мінус". У ході роботи вчитель "непомітно" вводить термін "вираз". Наприклад, пропонується вправа: запишіть і обчисліть вирази: до числа 4 додати 5; 6 плюс 3; 7 зменшити на 6; від числа 9 відняти 6; 10 мінус 8. Ніяких тлумачень терміна "вираз" не подається, його значення розкривається під час застосування в різних ситуаціях, у процесі виконання завдань виду: 1. Прочитайте спочатку вирази на додавання, а потім вирази на віднімання: 10 - 6; 7 + 2; 9 + 1; 6 - 4; 3 + 3; 2 - 1. 2.Складіть і запишіть два вирази на додавання і два — на віднімання. 3.Випишіть парами рівні між собою вирази: 10 + 3; 13 — 4; 2 + 5; 4 + 5; 5 + 7; 12 - 5; 14 - 5; 9 + 4. Зразок. 10 + 3 = 9 + 4. Якщо учні не розуміють завдання, то вчитель змінює формулювання, доповнює його. Словосполучення "значення виразу" на першому етапі не використовується. На другому етапі (під час запровадження дужок) розкривається інше значення знаків дій — знак дії визначає вираз: 5 + 2 — це сума чисел 5 і 2; 9 - 3 — це різниця чисел 9 і 3. Спираючись на знання дітей про назви чисел при діях додавання і віднімання, вчитель пояснює, що запис, який складається з двох чисел, сполучених знаком "плюс", називається так само, як і результат дії додавання, тобто сумою, а запис, який складається з двох чисел, сполучених знаком "мінус", називається так само, як результат дії віднімання, тобто різницею. Наприклад, 27 + 1 = 28 18 – 6 = 12 сума сума різниця різниця Щоб учні засвоїли нові значення термінів "сума" і "різниця" як назви виразів, їм слід пропонувати вправи виду: обчисліть суму (різницю) чисел 10 і 6; запишіть суму (різницю) чисел 8 і 7 (обчислювати результат не треба); порівняйте суми (різниці) чисел 12 і 7 та 12 і 5; прочитайте той вираз, який є сумою; замініть число сумою чисел. Діти мають зрозуміти, що при обчисленні суми (різниці) виконується вказана дія, а при записі суми (різниці) отримуємо два числа, сполучених знаком "плюс" ("мінус"). Ознайомлення учнів з виразами, в яких використовуються дужки, розпочинається з таких двох завдань: від числа 10 відняти суму чисел 4 і 3; до числа 7 додати різницю чисел 8 і 6. Вони усно виконують ці завдання. Після цього вчитель повідомляє, що при додаванні або відніманні суми чи різниці їх записують у дужки, що у виразах з дужками першою виконують дію над числами, записаними в дужках. Усвідомлення того, що вираз виступає як самостійний компонент дій, досягається в процесі розв'язування вправ, що передбачають читання виразів та їх записування: 1.Прочитайте, запишіть і обчисліть: від числа 12 відняти суму чисел 7 і 2; до числа 8 додати різницю чисел 13 і 6. 2.Використовуючи дужки, запишіть потрібні вирази і знайдіть відповіді: 16 зменшити на суму чисел 7 і 3; 9 збільшити на різницю чисел 14 і 8; різницю чисел 12 і 7 зменшити на 2. Ознайомлення учнів з термінами "числовий вираз" та "значення виразу" подається за допомогою розповіді. Учитель повідомляє дітям, що записи виду 25 + 3; 60 — 20; 10+4 — 8; 16 —(8 — 5) називають числовими виразами. Якщо в цих числових виразах виконати зазначені дії, то отримаємо значення виразів. Наприклад: 25 + 3 = 28. Інакше кажучи, значення виразу 25 + 3 дорівнює 28, або сума чисел 25 і З дорівнює 28. Третій етап припадає на початок ознайомлення з діями множення та ділення і триває до запровадження правил порядку виконання арифметичних дій. Діти повинні засвоїти назви компонентів і результатів дій множення та ділення, а також закріпити, що терміни "сума", "різниця", "добуток" і "частка" означають не тільки результати відповідних дій, а й самі вирази цих дій. Засвоєння учнями термінології відбувається в процесі виконання системи відповідних вправ. На четвертому етапі розглядається правило обчислення значень виразів, що містять дії різних ступенів (у довільному порядку), подаються формулювання всіх правил порядку виконання дій. Ознайомлення з цим матеріалом виконують прямим повідомленням та читанням правил за підручником. Корисними для засвоєння порядку виконання дій у виразах є завдання виду: • обчисліть тільки першу дію кожного виразу; • знайдіть значення виразів, у яких останньою є дія віднімання; • розставте дужки так, щоб рівності були правильними, та ін. Учнів вчать правильно читати, записувати й обчислювати складені вирази (вирази на кілька дій). Це суми, різниці, добутки і частки, в яких один або два компоненти задані виразом. Це складний для дітей матеріал. Тому варто проаналізувати структуру одного-двох виразів. Наведемо зразок бесіди, яку можна провести в процесі аналізу виразу: 40 — 20: 4. Бесіда. Яку дію у цьому виразі виконують останньою? (Віднімання). Як називають числа при відніманні? (Зменшуване і від'ємник). Назвіть зменшуване. (Зменшуване 40). Від'ємник тут виражений часткою чисел 20 і 4. Повторіть, чим виражений від'ємник. (Від'ємник виражений часткою чисел 20 і 4). Отже, останньою в цьому виразі буде виконуватися дія віднімання, тому весь цей вираз можна назвати різницею. Цей вираз можна прочитати так: це різниця числа 40 та частки чисел 20 і 4 — або так: зменшуване 40, від'ємник виражений часткою чисел 20 і 4. Перетворення і порівняння числових виразів. Числові рівності і нерівності Тотожне перетворення числового виразу — це заміна одного виразу іншим без зміни його значення. В процесі обчислень складених виразів ми постійно виконуємо тотожні перетворення. Процес перетворення виразів, крім безпосередніх обчислень, відбувається під час виконання ряду вправ. Найбільш типовими серед них є такі: заміна числа сумою двох доданків (7 = 2 + 5); заміна числа розрядними доданками (235 = 200 + ЗО + 5); перетворення виразу на основі означення дії множення (4 + 4 + 4 = 4-3); обчислення у вигляді ланцюжка рівностей (7 + 8 = 7 + + (3 + 5) = 10 + 5 = 15); ілюстрування правил чи властивостей арифметичних дій ((20 - 3) • 4 = 20 • 4 - 3 • 4). Одним з видів роботи з перетворення виразів є їх порівняння. У початкових класах його проводять здебільшого на основі порівняння значень виразів. У деяких вправах порівняння виконують на основі властивостей арифметичних дій. Саме в цих випадках більше виявляється "тотожність виразів". Наприклад: 4 • 3 + 4 • 6 = 4 • (3 + 6). Порівняння виразів з використанням знаків "більше", "менше" і "дорівнює" допомагає у розвитку самоконтролю під час проведення обчислень, стає основою у формуванні уявлень про числові рівності і нерівності, про нерівності зі змінною. У діючих підручниках вправ на порівняння достатньо, практикуються різні форми подання завдань (наприклад, порівняйте значення виразів і поставте потрібний знак; запишіть приклади, в яких відповідь менша за 50; випишіть вирази, між якими треба поставити знак ">", та ін.). Порівняння виразів і поняття про рівність використовуються під час ознайомлення з деякими властивостями арифметичних дій. Наприклад, порівнюючи вирази виду 7 + 3 і 3 + 7, учні знаходять, що значення виразів однакові. Отже, можна записати, що 7 + 3 = 3 + 7, і зробити висновок про переставну властивість додавання. Потрібно стимулювати дітей до порівняння виразів на основі міркування. Наприклад: 9*9 — 3. Зліва — число 9, справа — від числа 9 відняли 3. Отже, справа стало менше, ніж 9. Тому 9 > 9 — 3. 10 + 3* 10 + 5. У сумах зліва і справа перший доданок — 10. Другий доданок зліва — 3, а справа — 5. Зліва додали менше, ніж справа. Отже, 10 + 3 < 10 + 5. 5 + 5 + 5 + 5*5-3. Зліва число 5 береться доданком 4 рази, а справа — тільки 3 рази. Отже, значення виразу зліва більше, ніж значення виразу справа, тому 5 + 5 + 5 + 5>5-3. Корисні і подобаються учням вправи на порівняння виразів способом зміни порядку виконання арифметичних дій за допомогою дужок (наприклад, розставити дужки так, щоб рівності були правильними: 31 - 10 - 3 = 24; 4-7-4:2 = 20).
Вирази зі змінною Підготовка до ознайомлення зі змінною. Підготовка до введення змінної починається у неявній формі вже в процесі складання таблиць додавання і віднімання в межах першого десятка. В таблицях додавання перший доданок змінюється, а другий — сталий, у таблицях віднімання змінним е зменшуване, а сталим — від'ємник. Підготовчими є вправи з "віконцями". Приклади, де у "віконце" треба підставити певне число, підводять до поняття "невідомого числа". Ознайомлення з буквеним позначенням змінної. З буквами латинського алфавіту учні ознайомлюються в З класі. В 2 класі для позначення змінної використовується буква "а", яка має однакову назву в українському і латинському алфавітах Буквене позначення компонента дії (доданка) вводять під час вивчення таблиць додавання і віднімання з переходом через десяток (перед вивченням таблиці додавання числа 5). Учням пропонують завдання, подібні до поданих нижче. Який доданок сталий? Який доданок змінюється? Позначимо другий доданок буквою а: 8 + а. За цією вправою проводять бесіду: прочитайте перші доданки прикладів, прочитайте другі доданки. Який доданок сталий? Який змінюється? Щоб не записувати різні числа другого доданка, можна позначити його будь-якою буквою, наприклад, буквою а. Тоді суму можна записати так: 8 + а. Читають цей запис таким чином: сума чисел 8 і а або 8 плюс а. Якщо замість букви будемо підставляти зазначені числа, то для кожного числа можна знайти суму. Наприклад, якщо а = 1, то 8 + а = 9; якщо а = 2, то 8 + а = 10. Знайдіть самостійно суму 8 + а, якщо а = 3, а = 4. Буквою можна позначити не тільки другий чи перший доданок, а й зменшуване чи від'ємник. Знайдемо різницю а - 4, якщо а = 12, а = 8, а = 1. Запишемо: о-4 а= 12 12-4 = 8 я=8 8-4=4 а = 7 7-4=3 З метою використання вправ на знаходження значень виразів зі змінною в усних обчисленнях вчитель ознайомлює учнів з табличними формами завдань. Наприклад:
Знаходження значень виразів зі змінною. У процесі виконання завдань на знаходження значень виразів зі змінною формується розуміння змінної як букви у виразі, що може набувати деякої множини значень. Починаючи з часу вивчення таблиць додавання і віднімання з переходом через десяток, діти вчаться знаходити значення найпростіших виразів з однією змінною виду: а + 8; 46 - а; 3 • а; 24: а; 3 • а + 17, якщо а = 3 (4, 6, 8). У 3 класі для позначення змінної вводять букви латинського алфавіту; розглядають вирази, в яких змінна повторюється; опрацьовують вирази з двома змінними. Учням пропонують завдання виду: 1. Знайдіть значення виразів, якщо а = 12. а + (а + 25) (а + а): 4 а: 4 + а 2. Обчисліть суму чисел а і Ь, якщо а - 37, Ь = 44; а = 85, 6=12 У 4 класі вводять завдання, в яких треба виконувати письмові обчислення. Наприклад: знайдіть значення виразу а + Ь, якщо а = 338, Ь = 507. Письмові обчислення оформлюють так: а + Ь. а =338, 6 = 507. 338 а + Ь = 845. +507 Пропонуються також завдання, в яких потрібно не тільки знайти значення виразу, а й попередньо скласти його. Наприклад: зменшуване к, а від'ємник виражений часткою чисел Ь і 10. Знайдіть значення різниці, якщо к = 200, Ь = 180. Розв'язання буде мати такий вигляд: Іс-Ь: 10. Іс = 200, 6= 180. 200- 180: 10= 182. к-Ь: 10= 182.
Розв'язування задач складанням числових виразів Закріпленню поняття виразу сприяє запровадження розв'язування задач складанням виразу. Після засвоєння учнями змісту задачі і встановлення шляхів її розв'язування визначають дії, потрібні для її розв'язання, встановлюють послідовність дій. Потім кожну дію лише записують, але обчислення не виконують. Вираз, складений для першої дії, буде одним з компонентів другої дії; другий вираз (ускладнений) буде одним з компонентів третьої дії і т. д. В результаті отримують числовий вираз, який відображає весь хід розбору задачі і показує послідовність дій для її розв'язування. Під час розв'язування задач складанням виразу бажано також складати план розв'язування. Розбір задачі краще проводити від числових даних. Підготовка учнів до розв'язування задач складанням виразу. Під час підготовчої роботи виконують завдання, основна мета яких полягає не у знаходженні числового результату, а у складанні числових виразів, а також у тлумаченні (аналізі) готових виразів, складених за умовою задачі. Складаючи числові вирази за умовою задачі, учні навчаються записувати деяку життєву ситуацію математичною мовою. Оскільки числовий результат знаходити не треба, то увага дітей зосереджується саме на складанні виразу. На початковому етапі складають здебільшого вирази на одну дію. Ставиться на меті розвинути вміння учнів синтезувати два числа і визначити дію відповідно до запитання. Розгляньмо приклад. Задача. В юннатів було 12 сірих і 4 білих кролі. Використовуючи ці числа і знак дії, запишіть виразом, скільки всього кролів було в юннатів. Знаходити значення виразу не треба. Відповідь. 12 + 4 (кролів). Змінюючи вимогу до тієї самої умови, можна показати її роль у виборі дії. Так, до розглянутої умови доцільно додати ще такі вимоги: записати у вигляді виразу, на скільки більше сірих кролів, ніж білих (12 — 4); записати у вигляді виразу, в скільки разів білих кролів менше, ніж сірих (12: 4). Тлумачення готових виразів, складених за умовою задачі, використовується вчителями як вид творчої роботи. Розв'язування задач складанням виразу чергується з тлумаченням готових виразів. Зразки завдань такого виду: 1. Рибалка спіймав 7 окунів і 5 карасів. На юшку він використав8 рибин. Про що дізнаємося, обчисливши вирази: 7 + 5; 7 — 5; (7 + 5) - 8? 2. Прочитайте задачі і знайдіть для кожної вираз, за допомогою якого вона розв'язується. а) У сувої було 13 м тканини. Відрізали 7 м тканини, а потій ще 5 м. Скільки метрів тканини залишилось у сувої? б) Потрібно заправити пальним 13 колісних і 7 гусеничних тракторів. Заправили 5 тракторів. Скільки тракторів залишилося заправити? 13-(7-5) (13+ 7)-5 (13-7)-5 Ознайомлення учнів зі способом послідовного складання виразу для розв'язання задачі. Задача. В їдальні було 6 банок томатного соку по 3 л кожна, На обід витратили 12 л соку. Скільки літрів соку залишилося в 'їдальні? Розв'язання З • 6 (л) соку було в їдальні;.і. З • 6 - 12 (л) соку залишилося в їдальні. ' 3-6-12 = 6 (л). * Відповідь. В їдальні залишилося 6 л соку. Бесіда (після вивчення умови). Якщо відомо, що в їдальні бую 6 банок соку по 3 л кожна, то про що можна дізнатися за цими даними? (Скільки літрів томатного соку було в їдальні). Якщо знатимемо, скільки літрів томатного соку було спочатку в їдальні, і відомо, що на обід витратили 12 л соку, то про що зможемо дізнатися? (Скільки літрів соку залишилося в їдальні). Отже, знайдемо відповідь на запитання задачі. Ця задача на дві дії. Будемо записувати розв'язання задачі, поступово складаючи вираз. Як дізнатися, скільки літрів томатного соку було в їдальні? (Треба 3 помножити на 6). Запишемо: 3 • 6, але обчислювати відразу не будемо, Біля виразу запишемо коротко в дужках, що ми знайшли: 3 • 6 (л) томатного соку було в їдальні. Як дізнатися, скільки літрів соку залишилося в їдальні після обду? (Треба від добутку чисел 3 і 6 відняти 12). Запишемо цей вираз і в дужках коротко найменування того, що знайшли: 3-6-12 (л), а також коротке пояснення: соку залишилося в їдальні. Запишемо розв'язання і відповідь задачі. У навчанні дітей розв'язувати задачі складанням виразу допомагають схеми розв'язування задачі. Задача. На першій тарілці було 12 помідорів, а на другій — 9. Зц сніданком діти з'їли 8 помідорів. Скільки помідорів залишилося? Розв'яжіть задачу, користуючись схемою: Складання виразів за даною схемою варто застосовувати і з метою індивідуальної допомоги слабо встигаючим учням. Розв'язування задач з буквеними даними. Продовженням роботи над поняттям виразу є розв'язування задач з буквеними даними, вводяться у 3 класі Задача. З першої грядки зібрали 6 гарбузів, а з другої — а гарбузів. Усі гарбузи склали у 2 ящики порівну в кожний. Скільки гарбузів поклали в один ящик? Розв'язання 6 + а (г.) зібрали з двох грядок;; (6 + а): 2 (г.) поклали в один ящик. Відповідь. (6 + а): 2 гарбузів. Аналізують такі задачі так само, як задачі з числовими даними. Записують розв'язання задач здебільшого поступовим складанням виразу. До таких задач можна давати додаткове завдання усно обчислити відповідь, якщо а, наприклад, дорівнює 4. Задачі з буквеними даними допомагають учням глибше усвідомити процес розв'язування задач та значення букви як змінної, сприяють вмінню складати і записувати розв'язки задач виразом.
2.Числові piвностi i рівняння. Поняття рівняння тісно пов'язане з поняттям виразу, змінної, рівності. З рівняннями діти ознайомлюються у 3 класі. Відповідна підготовча робота розпочинається з 1 класу. Вона передбачає виконання вправ з "віконцями" та знаходження невідомого компонента арифметичних дій на основі зв'язків між компонентами та результатами арифметичних дій. Розв'язування рівнянь. Ознайомлення з рівняннями грунтується на двох вправах, поданих нижче. Вправа 1. Порівняй і замість зірочки постав знак ">", "<" або "=", якщо відомо, що в усіх випадках х = 5. 13-х =8 х+22*25 х-2 * 10 16-х>10 х+5*10 х- 1 *4 Після перевірки правильності виконання завдання вчитель пропонує учням виписати в окремий рядок усі рівності і повідомляє їм, що рівності зі змінною (з невідомим) називають рівняннями. У кожному з виписаних рівнянь невідоме дорівнює 5. Це розв'язок кожного з даних рівнянь. Вправа 2 13-х = 8- х+5=10 х-1 = 4 Це — рівняння. Розв'язати рівняння означає знайти те числове значення букви, при якому рівність буде правильною. Перевірте (усно), чи правильно розв'язані рівняння. х+8=11 20 + х=52 *. х = 11 - 8 х=52-20 х = 3 х = 32 Після виконання завдання вчитель повідомляє, що невідомий доданок у рівнянні можна знаходити добором або за правилом знаходження невідомого доданка. На наступному уроці вчитель подає зразок міркування при розв'язуванні рівняння на знаходження невідомого доданка Міркування. У рівнянні х + 7 = 70 невідомий перший доданок, відомі другий доданок і сума. Щоб знайти невідомий доданок, треба від суми відняти відомий доданок. Запишемо рівняння так: х+7 = 70 х = 70 - 7 х = 63 Перевіримо (усно): і 63 + 7 = 70 70 = 70 Рівняння на знаходження зменшуваного або від'ємника пропонують учням після повторення правил на знаходження відповідних компонентів. У 3 класі діти вчаться розв'язувати рівняння на знаходження невідомого множника, діленого, дільника. Кожне з цих рівнянь розглядають одразу після ознайомлення з відповідним правилом. До розгляду правил учні мають справу 3 рівняннями цього виду на рівні вправ з "віконцями". Наприклад, добери потрібні числа: П • 2 = 8 П: 3 = 8 32: П = 8 Вони ознайомлюються також з розв'язуванням рівнянь, що потребують письмових обчислень. Наприклад: 765 —х= 567 _765 Перевірка:,765 х= 765 -567 567 198 і х= 198 198 567 '! 567 = 567 У процесі формування вмінь розв'язувати рівняння практикують як усне розв'язування, так і з записами у зошиті. З усіма різновидами рівнянь на знаходження невідомого компонента учні ознайомлюються в 3 класі. У 4 класі вони лише закріплюють навички, розв'язують рівняння в нових числових межах. Однак вважаємо, що учнів 4 класу потрібно ознайомити з розв'язуванням рівнянь на дві операції. Розв'язування задач складанням рівнянь. У початковій школі способом складання рівнянь розв'язують лише прості задачі. Для першого ознайомлення з розв'язуванням задач складанням рівнянь доцільно взяти подану нижче задачу. Задача. Михайлик і Андрійко знайшли 10 грибів. Михайлик знайшов 6 грибів. Скільки грибів знайшов Андрійко? Відповідаючи на поставлені вчителем запитання, учні повторюють задачу. Бесіда. За умовою задачі Михайлик і Андрійко знайшли 10 грибів, а сам Михайлик — 6 грибів. Нам невідомо, скільки грибів знайшов Андрійко. Позначимо кількість грибів, які знайшов Андрійко, буквою х Якщо би Михайлик знайшов 6 грибів, а Андрійко — 3 гриби, то як треба було би записати: скільки всього грибів зібрали діти? (Треба до числа 6 додати 3). Правильно. Однак у задачі сказано, що Михайлик знайшов 6 грибів, а Андрійко — х Як записати, скільки всього грибів знайшли діти? (6 + х). Чому дорівнює за умовою задачі 6 +х? (10). Отже, як запишемо рівняння? (6 + х = 10). Розв'яжемо його Для первинного закріплення учні під керівництвом вчителя розв'язують такі задачі: 1. Задумане число зменшили на 12 й отримали 36. Яке число задумали? 2.До задуманого числа додали ЗО й отримали 63. Знайдіть задумане число. Позначте задумане число буквою х, а потім складіть і розв'яжіть рівняння. Прокоментуємо розв'язування першої задачі. Задумане число х. У задачі сказано, що задумане число зменшили на 12. Щоб зменшити число на 12, треба від нього відняти 12. Будемо мати: х— 12. У задачі сказано, що після зменшення на 12 отримали 36. Запишемо: х- 12 = 36. Розв'яжемо рівняння. У ньому невідоме зменшуване. Щоб знайти зменшуване, треба до різниці додати від'ємник. Запишемо: х= 36 + 12 х= 48 На наступних уроках діти ознайомлюються з абстрактними задачами на знаходження невідомого множника, невідомого діленого і невідомого дільника. Сильнішим учням можна запропонувати і складені задачі розв'язати рівнянням. Такі задачі пропонуються.серед завдань із "зірочкою". З.Числові нерівностi та нерівності, що вміщують змінну. Розв'язування нерівностей у початкових класах не є обов'язковою вимогою програми. Нерівності розглядають для ознайомлення з ними. (А це означає, що такі завдання не входять до контрольних робіт). Вправи з нерівностями здебільшого є цікавими завданнями на порівняння виразу зі змінною з даним числом. Термін "розв'язати нерівність" не вводиться, бо переважно обмежуються кількома значеннями змінної, при яких утворюється правильна нерівність. Нерівності з "віконцями" трапляються вже у 2 класі. Учням пропонують дібрати число, яке треба вставити у "віконце" (замість зірочки), щоб отримати правильну нерівність або рівність. Наприклад: 1. Перепиши, поставивши у клітинку потрібне число. 25 + 8 > 25 + * 40 - 12 < 40 - * 16-5 > 15-* 34+ 10 < 34 + * 2. Добери такі числа, щоб нерівності й рівності були правильними. 5-6 > 5-* 7-4< 7-* 6-6 + 6 = 6-* У ході опрацювання таких вправ учитель спонукає дітей, щоб вони назвали різні числа. Упорядкувавши числа, доцільно подати узагальнення. Наприклад, у нерівність 4 + * < 10 можна підставляти будь-які числа, менші від 6. Вперше нерівності зі змінною розглядаються наприкінці вивчення табличного множення і ділення, їх теж розв'язують методом добору (усно). Наведемо приклад. З чисел 65, 70, 75 і 80 випишіть ті значення х, при яких нерівність х — 65 < 8 правильна. Бесіда. Підставимо числові значення букви х у нерівність, обчислимо різницю і порівняємо результат з числом 8. 65 — 65 = 0, 0 < 8, тому число 65 підходить; 70 — 65 = 5, 5 < 8, тому число 70 теж підходить;: ; 75 - 65 = 10, 10 > 8, число 75 не підходить; 80 - 65 = 15, 15 > 8, число 80 не підходить. Відповідь. 65, 70. Складнішими є завдання, в яких не вказується множина значень змінної. Серед них учні повинні вибрати ті, при яких вказана нерівність є правильною. Учні самі добирають такі значення змінної. Наприклад: Знайди два таких значення Іс, щоб нерівність Л • 7 > 40 була правильною. Слабші учні будуть надавати букві Іс значень, починаючи з одиниці, а сильніші, виходячи зі знання таблиць множення, можуть відразу запропонувати ті значення букви /с, при яких нерівність буде правильною. Якщо пропонують знайти всі значення змінної, при яких нерівність правильна, то в кількісному значенні їх множина нечисельна. Наприклад, для нерівності х— 20 < 8 вона складається з восьми чисел: 20, 21, 22, 23, 24, 25, 26, 27. Проте правомірне й розв'язування нерівностей з такими відповідями, як х > 10, х < 10. Аналізуючи нерівність х — 40 > 0, учень міркує так: "Можна буде відняти, якщо зменшуване дорівнюватиме 40 або буде більше від 40. Проте 40 - 40 = О". Відповідь. Усі числа, більші від 40, тобто х > 40. • - У плани уроків слід частіше вносити завдання з нерівностями. Формування уявлень учнів про функціональну залежність У плані функціональної пропедевтики поняття функції вживатимемо у вузькому розумінні — як зв'язок між змінними величинами. З метою формування уявлень молодших школярів про змінні та сталі величини, про зв'язки між величинами у діючих підручниках з математики подаються вправи з таблицями, вправи на знаходження значень виразів зі змінною, задачі з пропорційними величинами. У початкових класах учні ознайомлюються з вимірюванням деяких величин (довжина, площа, маса, час), встановлюють зв'язки між величинами: ціна, кількість і вартість; маса одного предмета, кількість предметів і загальна маса; швидкість, час і відстань при рівномірному русі тіла тощо. Діти спостерігають, як змінюється результат арифметичної дії від зміни компонентів. Названі величини попарно перебувають у різних видах залежностей: прямо пропорційній (ціна і вартість, множник і добуток); обернено пропорційній (ціна і кількість, дільник і частка); лінійній (доданок і сума, зменшуване і різниця). Завдання вчителя полягає в тому, щоб під час виконання відповідних вправ спрямувати увагу учнів на ці зв'язки і залежності. При цьому, звичайно, не використовують відповідні термінологію й символіку. Ознайомлення дітей з функціональною залежністю відбувається в неявному вигляді. Вчитель оперує лише словами "залежність", "змінна величина". У початкових класах функціональну залежність між величинами здебільшого описують словами та показують її за допомогою таблиці. Словесний спосіб використовується при розв'язуванні задач, в яких розглядаються взаємопов'язані величини. Задача. У склянки з чаєм розклали 12 грудочок цукру по 2 грудки в кожну. На скільки склянок вистачило цього цукру? Бесіда. Виконаємо малюнок (мал. 146). Намалюємо 12 кружечків і підкреслимо кожних два кружечки. Запишемо розв'язання задачі. 12:2 = 6 (скл.). Дізнаємося, на скільки вистачить цього цукру, якщо у кожну склянку покласти по 3 грудочки цукру (мал. 147). оооооооооооо Запишемо розв'язання задачі. 12:3 = 4 (скл.). З'ясуємо, на скільки склянок вистачило б цього цукру, якщо у кожну склянку покласти по 4 грудочки. Запишемо розв'язання задачі. 12:4 = 3 (скл.). Розглянемо малюнки ще раз. Якщо поклали по 2 грудочки цукру, то його вистачило на 6 склянок, по 3 грудочки — на 4 склянки, по 4 грудочки — на 3 склянки. В якому випадку склянок з чаєм менше? (В останньому, бо тут поклали по 4 грудочки цукру). Отже, чим більше покладемо грудочок у кожну склянку, тим менше отримаємо склянок чаю з цукром. Між кількістю грудочок цукру і кількістю склянок з чаєм існує певна залежність. Табличний спосіб передбачений багатьма вправами, в яких є функціональна залежність між змінними. Наведемо приклад.
Дата добавления: 2015-05-24; Просмотров: 1469; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |