КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Реактивные гидротурбины
К реактивным гидротурбинам относятся: радиально-осевые пропеллерные, поворотно-лопастные (включая двухперовую) и диагональные. Общий вид рабочих колес представлен на рис. 9.3. Для реактивных турбин характерны следующие основные признаки. Рабочее колесо располагается полностью в воде, поэтому поток поды отдает энергию одновременно всем лопастям рабочего колеса. Перед рабочим колесом только часть энергии воды находится в кинетической форме, остальная же — потенциальная энергия, соответствующая разности давлений до и после колеса. Избыточное давление p/pg по мере протекания воды по проточному тракту рабочего колеса расходуется на увеличение относительной скорости, т. е. на создание реактивного давления потока на лопасти. Изменение направления потока за счет, кривизны лопастей приводит к возникновению активного давления потока. Таким образом, действие потока на лопасти рабочего колеса складывается из реактивного воздействия, возникающего из-за увеличения относительной скорости, и активного давления, возникающего из-за изменения направления потока Радиально-осевые турбины (РО) (за рубежом их называют турбинами Френсиса) характерны тем, что вода при входе на рабочее колесо движется в радиальной плоскости, а после рабочего колеса — в осевом направлении, и используются в довольно широком диапазоне напоров — от 30—40 м до 500— 550 м Талой большой диапазон обеспечивается конструктивными изменениями рабочего колеса и всей турбинной установки Рабочее колесо радиально-осевой турбины состоит из ряда лопастей 2 сложной пространственной формы, равномерно распределенных по окружностям ступицы 1 (верхний обод) и нижнего обода 3 (рис 93,а и 94) Все три части объединены между собой и представляют одну жесткую конструкцию Число лопастей может колебаться от 9 для низконапорных до 21 для высоконапорных турбин. За диаметр рабочего колеса принимается максимальный диаметр по входным кромкам лопастей D1. Лопасти рабочих колес крупных гидротурбин имеют в сечении по линии потока обтекаемую форму, что позволяет делать их значительной толщины для достижения необходимой прочности С увеличением используемого напора форма рабочего колеса радиально-осевых турбин меняется, отношение выходного диаметра к входному D2/D1 уменьшается. Так, для Красноярской ГЭС (Нмакс≈ 101м) D2/D1 = 1,13, а для Ингурской ГЭС (Н мак°≈ 410 м) D2/D1=0,68 Высоконапорные турбины оборудуются холостыми выпусками для отвода воды от рабочего колеса и уменьшения за этот счет гидравлического удара при сбросе нагрузки Caмая мощная турбина такого типа в СССР (650 МВт) установлена на Саяно-Шушенской ГЭС. Пропеллерные турбины (Пр). Рабочее колесо такой турбины располагается в камере ниже направляющего аппарата Поэтому между направляющим аппаратом и рабочим колесом осуществляется нерабочий поворот потока На лопасти рабочего колеса поток поступает только в осевом направлении, из-за чего такие турбины называются осевыми. Рабочее колесо (рис 9 3,6 и 9 5) состоит из втулки / с обтекателем 2 и рабочих лопастей 3 и, как видно из рисунков, отличается от колес радиально-осевых турбин отсутствием нижнего обода, меньшим числом лопастей и их формой (в данном случае она похожа па форму гребного винта или пропеллера). Число лопастей зависит от напора и может колебаться от трех до восьми (растет с увеличением напора). Лопасти закреплены на втулке под постоянным углом φ=-10°;-5°; 0°; +5°; +10°; 15°; +20°, отсчитываемым от некоторого среднего положения (φ=0). Обычно на турбинах с диаметром рабочего колеса Di ≥ l,6 м имеется возможность перестановки лопастей при останове турбины на тот или иной угол, если такая потребность возникнет во время эксплуатации. Основным достоинством пропеллерных турбин является простота конструкции и сравнительно высокий КПД. Однако турбины имеют существенный недостаток, заключающийся в том, что с изменением нагрузки резко изменяется и КПД, Зона высоких значений КПД наблюдается только в узком диапазоне изменения мощности. Этот недостаток существенно снижает эффективность пропеллерных турбин при использовании их в системах с дефицитом энергии. Однако это несущественно, если основным назначением ГЭС является работа в пиковой части графика нагрузки, т. е. при малом числе часов использования установленной мощности ГЭС, Иногда на крупных ГЭС пропеллерные турбины устанавливаются совместно с радиально-осевыми или поворотно-лопастными, которые имеют более растянутый диапазон максимального значения КПД. Поворотно-лопастные турбины (ПЛ). По конструктивному выполнению поворотно-лопастные турбины (за рубежом их называют турбины Каплана) отличаются от пропеллерных только тем, что у них лопасти рабочего колеса в процессе работы могут поворачиваться вокруг своих осей, перпендикулярных оси вала (см. рис. 9.3,е). Мощность, отдаваемая рабочим колесом такой турбины, и его КПД при постоянном напоре зависят как от открытия лопаток направляющего аппарата (см. § 9.4), так и от угла поворота лопастей по отношению к втулке. Изменяя угол установки лопастей при различных открытиях направляющего аппарата, а следовательно, при различной мощности, можно найти такое положение лопастей, при котором КПД турбины будет иметь наибольшее значение. Конструктивно поворотно-лопастные турбины выполняются таким Поворотно-лопастные турбины используются в диапазоне напоров-от 3—5 до 35—45 м. В последнее время, стремясь использовать некоторые преимущества этих турбин перед радиально-осевыми предпринимаются небезуспешные попытки применять их на напоры до 70— 75 м. Наиболее мощная поворотно-лопастная турбина (178 МВт) изготовлена в СССР и установлена па ГЭС Джердан на Дунае. Двухперовая турбина. Увеличение числа лопастей рабочего колеса поворотно-лопастной турбины по мере повышения используемого напора приводит к возрастанию относительного диаметра втулки (dвт/D1) и последующему ухудшению энергетических качеств турбины. Для смягчения этого недостатка применяются спаренные (двухперовые) рабочие лопасти, имеющие общий фланец и общую цапфу (рис. 9.3,г; 9.6), что позволяет повысить пропускаемый турбиной расход. Двухперовые турбины не тлеют пока широкого распространения. Диагональные турбины (Д). Появление этих турбин обусловлено теми же причинами, что и двухперовых, т. е. стремлением обеспечить возможность работы осевых турбин двойного регулирования в области напоров, используемых радиально-осевыми турбинами. Отличие диагональных турбин от поворотно-лопастных заключается в конструкции рабочего колеса, которая представляет собой конусообразную втулку с расположенными на ней под некоторым углом к оси вращения колеса лопастями (число их доходит до 14), могущими поворачиваться вокруг своих осей (рис. 9.3,<Э). При этом втулка рабочего колеса, несмотря на свои относительно большие размеры по сравнению с втулкой у поворотно-лопастных турбин не создает стеснения потока. Благодаря этому за рабочим колесом нет участка с резким расширением сечения, как в осевых турбинах, что в 'сочетании с другими особенностями диагональных турбин обеспечило им более высокие энергетические и кавитационные (см. § 9.5) качества. Максимальное значение КПД диагональной турбины на 1,5—2,5% выше, чем осевой. Вместе с тем они сложнее по конструкции, чем осевые и радиально-осевые, а последним в ряде случаев уступают и по кавитационным Качествам. Диагональные турбины не имеют широкого распространения в СССР, они установлены лишь на Бухтар-мниской и Зейской ГЭС мощностью 75 и 200 МВт соответственно. Однако, как показывают исследования, они могут оказаться весьма, эффективными в диапазоне напоров от 35—40 м до 150—200 м и особенно при больших колебаниях нагрузки. Часть из рассмотренных здесь турбин может быть использована не только в вертикальном, но и в горизонтальном исполнении. Кроме того, турбины могут быть выполнены обратимыми (турбина-насос), что, в частности, важно для сооружаемых ГАЭС.
Дата добавления: 2015-05-08; Просмотров: 764; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |