КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Истечение и дросселирование газов и паров
З-8.6 З-8.5 З-8.4 З-8.3 З-8.2 З-8.1 Задачи Решение. П-8.2 Найти массу, внутреннюю энергию, энтальпию и энтропию 6 м3 насыщенного водяного пара при давлении р =1,2 МПа и степени сухости пара х =0,9. Значения внутренней энергии, энтальпии и энтропии определяем по формулам из таблицы 5 для насыщенного водяного пара, принимая необходимые для них исходные данные по приложению А Удельный объем влажного пара м3/кг. Масса пара кг. Энтальпия пара кДж. Внутренняя энергия пара кЖд. Энтропия пара
кДж/К.
В барабане котельного агрегата находится кипящая вода и над ней водяной пар под давлением р =9 МПа. Масса воды М =5000 кг. Объем барабана V =8 м3. Какова масса пара, находящегося над зеркалом испарения, если пар считать сухим насыщенным? Ответ: МП =45 кг.
В трубе течет водяной пар при давлении р =2 МПа и степени сухости х =0,96 со скоростью w =40 м/с. Расход пара m =5000 кг/ч. Определить внутренний диаметр трубы. Ответ: d =65 мм. К питательной воде, вводимой в прямоточный паровой котел при р =24 МПа и t =350 ºС в количестве D =900·103 кг/ч, от топочных газов подводится Q = 1600 ГДж/ч теплоты. Определить температуру пара на выходе из парового котла, его энтальпию и внутреннюю энергию. Падением давления при протекании воды и пара по трубам пренебречь. Представить процесс в Т-s и i-s диаграммах. Ответ: t2 = 570 ºС, i2 = 3403 кДж/кг, u2 = 3069 кДж/кг.
Водяной пар массой 1 кг сжимается изотермически. При этом состояние пара меняется так, что начальные его параметры р1 = 3,0 МПа и t1 = 360 ºС, а конечные соответствуют состоянию кипящей жидкости. Определить параметры в конце процесса и количество отведенной теплоты. Ответ: р2 =18,67 МПа, v”2 =0,001894 м3/кг, i”2 =1762 кДж/кг, s”2 =3,9162 кДж/(кг·К), q = -1809 кДж/кг.
Определить количество теплоты, затрачиваемой на перегрев 1 кг влажного пара при давлении р = 10 МПа и степени сухости х =0,98 до температуры t =480 ºС. Ответ: qП =621,6 кДж/кг.
В паровом котле объемом V =15 м3 находятся 4000 кг воды и пара при давлении 4 МПа и температуре насыщения. Определить массы воды и сухого насыщенного пара, находящегося в котле. Ответ: МП =206 кг, МВ =3794 кг.
Истечение газов может происходить через каналы различной формы. Канал, в котором с уменьшением давления скорость газового потока возрастает, называется соплом, канал, в котором скорость газа уменьшается, а давление возрастает, называется диффузором. При решении задач, связанных с истечением газа, наиболее распространенной является задача, связанная с истечением газа через сопло (насадку) из сосуда неограниченного объема. Процесс истечения газа из сопла теоретически происходит без теплообмена с окружающей средой, т.е. является адиабатным (q=0) и представлен на р - v и i-s диаграмме (рис. 8). Как правило, при решении подобных задач требуется определить скорость истечения и расход газа, проходящего через сопло. Для этого необходимо знать отношение давлений р2/р1, которое сравнивают с критическим отношением давлений для данного вида газа, определяемым по формуле , (9.1) где р1 - давление среды на входе в сопло; р2 – давление среды на выходе из сопла.
Рис. 8
В зависимости от формы канала и отношения давлений среды на выходе и на входе в канал скорость газового потока в выходном сечении канала может быть меньше, равной или больше скорости звука. Критические отношения давлений для разных видов газов при адиабатном истечении показаны в таблице 6.
Таблица 6 Критические отношения давлений при истечении из сопла
Таким образом, скорость истечения и расход газа могут определяться для двух случаев, когда (р2/р1)>(р2/р1)кр и (р2/р1)≤(р2/р1)кр: а) (р2/р1)>(р2/р1)кр. Теоретическая (дозвуковая) скорость истечения газа из суживающегося сопла , (9.2) где v1 – удельный объем газа на входе в сопло, м3/кг; Т1 – температура газа на входе в сопло, К. i1 и i2 – соответственно энтальпии газа в начальном и конечном состоянии, Дж/кг. Расход газа, вытекающего из сопла , (9.3) где f – площадь поперечного сечения выходного отверстия сопла, м2. б) При (р2/р1) ≤ (р2/р1)кр, давление в среде, куда происходит истечение опускается до критического давления в устье сопла р2кр и, соответственно, скорость и расход достигают своих критических (максимальных) значений. Критическая скорость истечения газа из суживающегося сопла – это скорость распространения звука, которая устанавливается при данных параметрах среды у выходного сечения , (9.4) где iкр – энтальпия при критическом давлении р2кр, Дж/кг. Скорость распространения звука в идеальном газе , (9.5) где Т – температура среды, равная Ткр истечения газа, К. Скорости wкр и а2 соответственно должны быть равны. Максимальный расход газа, вытекающего из сопла , (9.6) По формулам (9.2 – 9.6) можно определять скорость истечения и расход также для водяного пара, принимая при этом значения показателя адиабаты для перегретого пара k =1,3, для сухого насыщенного k =1,135, для влажного насыщенного k =1,035+0,1 х. Для получения скоростей истечения выше критических применяется не сужающееся, а комбинированное – сужающе-расширяющееся сопло (сопло Лаваля) (рис. 9), параметры которого определяются по данным ниже формулам. Площадь минимального сечения сопла , (9.7) Площадь выходного сечения сопла , (9.8) Длина расширяющейся части сопла , (9.9) где d2 и dmin – соответственно диаметры выходного и минимального сечения сопла, м; α – угол конусности расширяющейся части сопла.
Рис. 9
Работа, совершаемая идеальным газом при адиабатном истечении , (9.10) Сравнивая формулы (9.9) и (6.21) можно увидеть, что работа при истечении газа из сопла в k раз больше, чем работа просто адиабатного расширения газа. Процесс прохождения газа через суженное сечение называется дросселированием. Дросселирование – это необратимый процесс, при котором давление р2 за местом сужения всегда меньше, чем давление передним р1. При этом никакой работы газ не совершает l0 =0 и теплообмена с окружающей средой также не происходит, т.е. процесс является адиабатным. Удельный объем при дросселировании всегда возрастает v2>v1, температура идеальных газов не меняется, а температура реальных газов меняется, за исключением случая, когда она равна определенной начальной температуре – температуре инверсии , (9.11) где Ткр – критическая температура газа, К. Энтальпия газа или пара при дросселировании в начальном и конечном состоянии одинакова i1=i2, (9.12) Процесс дросселирования изображается на i-s диаграмме горизонтальной прямой по линии i =const (рис. 10).
Рис. 10
Дата добавления: 2015-05-09; Просмотров: 5411; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |