Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Второе начало термодинамики




В термодинамике большую роль играют понятия равновесного состояния и обратимого процесса. Равновесным состоянием системы называется такое состояние, при котором параметры системы имеют определённые значения, остающиеся при неизменных внешних условиях постоянными сколько угодно долго. Процесс, состоящий из непрерывной последовательности равновесных состояний, называется равновесным или квазистатическим. Из сказанного следует, что равновесным может быть только бесконечно медленный процесс. При достаточно медленном протекании реальные процессы могут приближаться к равновесному процессу сколько угодно близко. Равновесный процесс может быть проведен в обратном направлении, причём система будет проходит через те же состояния, что и при прямом ходе, но в обратной последовательности. Поэтому равновесные процессы называют также обратимыми процессами. В случае обратимого процесса при возвращении в исходное состояние ни в самой системе, ни в окружающих телах не остаётся никаких изменений. Если такие изменения появляются, то такой процесс называется необратимым процессом. Все реальные процессы необратимы. В механических процессах необратимость вызывается трением.

Процесс, при котором система переходит из состояния 1 в состояние 2, а затем возвращается в состояние 1 через другие промежуточные состояния, называется круговым процессом или циклом. Графически цикл изображается замкнутой кривой.

Всякая тепловая машина представляет собой систему, совершающую многократно некий круговой процесс (цикл). Пусть в ходе цикла рабочее вещество (например, газ) сначала расширяется до объёма , а затем сжимается до первоначального объёма (рис. 2.1). Чтобы работа за цикл была больше нуля, давление, (а, следовательно, и температура) в процессе расширения должно быть больше, чем при сжатии. Для этого рабочему веществу нужно в ходе расширения сообщать теплоту, а в ходе сжатия отнимать от него теплоту. Совершив цикл, рабочее вещество возвращается в исходное состояние. Поэтому изменение внутренней энергии за цикл равно нулю:

.

Это означает, что внутренняя энергия U является функцией состояния.

Количество теплоты, сообщаемой рабочему телу за цикл, равно

,

где – теплота, получаемая рабочим телом при расширении, а – теплота, отдаваемая при сжатии. Работа , совершаемая за цикл, равна площади цикла.

Таким образом, первое начало термодинамики, написанное для цикла, имеет вид:

. (2.1)

Как следует из этого выражения, не вся получаемая извне теплота используется для получения полезной работы.

Коэффициентом полезного действия (сокращённо КПД) тепловой машины называется отношение совершаемой за цикл работы к полученной за цикл теплоте :

.

Приняв во внимание соотношение (2.1), выражение для КПД можно записать в виде:

.

Поскольку не вся теплота , получаемая рабочим телом, используется для получения работы , КПД тепловой машины меньше единицы или меньше 100%. Попытки построить тепловую машину с КПД близким к единице оказались безрезультатными, так как существует закон природы, утверждающий, что всегда . Это и составляет одну из формулировок второго начала термодинамики.

Второе начало термодинамики:

Невозможно построить периодически действующую тепловую машину, которая бы всю подводимую к ней теплоту превращала в работу, т.е. всегда .

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 582; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.