КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Гипероны. Странность и четность элементарных частиц
В ядерных фотоэмульсиях (конец 40-х годов) и на ускорителях заряженных частиц (50-е годы) обнаружены тяжелые нестабильные элементарные частицы массой, большей массы нуклона, названные гиперонами (от греч. hyper — сверх, выше). Известно несколько типов гиперонов: лямбда (L0), сигма (S0, S+, S-), кси (J+, J-) и омега (W-). Существование W--гиперона следовало из предложенной (1961) М. Гелл-Манном (р. 1929) (американский физик; Нобелевская премия 1969 г.) схемы для классификации сильно взаимодействующих элементарных частиц. Все известные в то время частицы укладывались в эту схему, но в ней оставалось одно незаполненное место, которое должна была занять отрицательно заряженная частица массой, равной примерно 3284 me, В результате специально поставленного эксперимента был действительно обнаружен W--гиперон массой 3273me. Гипероны имеют массы в пределах (2183— 3273) me, их спин равен 1/2 (только спин W--гиперона равен 3'/2), время жизни приблизительно 10-10 с (для S0-гиперона время жизни равно приблизительно 10-20 с. Они участвуют в сильных взаимодействиях, т. е. принадлежат к группе адронов. Гипероны распадаются на нуклоны и легкие частицы (p-мезоны, электроны, нейтрино и g-кванты). Детальное исследование рождения и превращения гиперонов привело к установлению новой квантовой характеристики элементарных частиц — так называемой странности. Ее введение оказалось необходимым для объяснения ряда парадоксальных (с точки зрения существовавших представлений) свойств этих частиц. Дело в том, что гипероны должны были, как представлялось, обладать временем жизни примерно 10-23 с, что в 1013 раз (!) меньше установленного на опыте. Подобные времена жизни можно объяснить лишь тем, что распад гиперонов происходит за счет слабого взаимодействия. Кроме того, оказалось, что всякий раз гиперон рождается в паре с K-мезоном. Например, в реакции p+p-®L0+K0 (274.1) с L0-гипероном всегда рождается K0-мезон, в поведении которого обнаруживаются те же особенности, что и у гиперона. Распад же L0-гиперона происходит по схеме L0®p-+ p. (274.2) Особенности поведения гиперонов и K-мезонов были объяснены в 1955 г. М. Гелл-Манном с помощью квантового
числа — странности S, которая сохраняется в процессах сильного и электромагнитного взаимодействий. Если приписать каонам S=1, а L0- и S-гиперонам S=-1 и считать, что у нуклонов и p-мезонов S=0, то сохранение суммарной странности частиц в сильном взаимодействии объясняет как совместное рождение L0-гиперона с K0-мезоном, так и невозможность распада частиц с не равной нулю странностью за счет сильного взаимодействия на частицы, странность которых равна нулю. Реакция (274.2) идет с нарушением странности, поэтому она не может происходить за счет сильного взаимодействия. J-Гиперонам, которые рождаются совместно с двумя каонами, приписывают S=-2; W-гипероиам —S =-3. Из закона сохранения странности следовало существование частиц, таких, как К^ 0-мезон, S0-, ksi0-гипероны, которые впоследствии были обнаружены экспериментально. Каждый гиперон имеет свою античастицу. Элементарным частицам приписывают еще одну квантово-механическую величину — четность P — квантовое число, характеризующее симметрию волновой функции элементарной частицы (или системы элементарных частиц) относительно зеркального отражения. Если при зеркальном отражении волновая функция частицы не меняет знака, то четность частицы P= +1 (четность положительная), если меняет знак, то четность частицы P=- 1 (отрицательная). Из квантовой механики вытекает закон сохранения четности, согласно которому при всех превращениях, претерпеваемых системой частиц, четность состояния не изменяется. Сохранение четности связано со свойством зеркальной симметрии пространства и указывает на инвариантность законов природы по отношению к замене правого левым, и наоборот. Однако исследования распадов K -мезонов привели американских физиков Т. Ли и Ч. Янга (1956г.; Нобелевская премия 1957 г.) к выводу о том, что в слабых взаимодействиях закон сохранения четности может нарушаться. Целый ряд опытов подтвердили это предсказание. Таким об- разом, закон сохранения четности, как и закон сохранения странности, выполняется только при сильных и электромагнитных взаимодействиях. § 275. Классификация элементарных частиц. Кварки В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. Для ее пояснения в табл. 8 представлены рассмотренные выше элементарные частицы, для которых приводятся основные характеристики. Характеристики для античастиц не приводятся, поскольку, как указывалось в § 273, модули зарядов и странности, массы, спины, изотопические спины и время жизни частиц и их античастиц одинаковы, они различаются лишь знаками зарядов и странности, а также знаками других величин, характеризующих их электрические (а следовательно, и магнитные) свойства. В таблице нет также античастиц фотона и.p0 - и h0 -мезонов, так как антифотон и антипи-ноль- и антиэта-ноль-мезоны тождественны с фотоном и p0 - и h0-мезонами. В табл.8 элементарные частицы объединены в три группы (см. §272): фотоны, лептоны и адроны. Элементарные частицы, отнесенные к каждой из этих групп, обладают общими свойствами и характеристиками, которые отличают их от частиц другой группы. К группе фотонов относится единственная частица — фотон, который переносит электромагнитное взаимодействие. В электромагнитном взаимодействии участвуют в той или иной степени все частицы, как заряженные, так и нейтральные (кроме нейтрино). К группе лептонов относятся электрон, мюон, таон, соответствующие им нейтрино, а также их античастицы. Все лептоны имеют спин, равный 1/2, и, следовательно, являются фермионами (см. §226), подчиняясь статистике Ферми — Дирака (см. §235). Поскольку лептоны в сильных взаимодействиях не участвуют, изотопиче-
ский спин им не приписывается. Странность лептонов равна нулю. Элементарным частицам, относящимся к группе лептонов, приписывают так называемое лептонное число (лептонный заряд) L. Обычно принимают, что L=+1 для лептонов (e-, m-, t- , vе, vm, vt), L= — 1 для антилептонов (e+, m+, t +, v^e, v^m, v^t) и L=0 для всех остальных элементарных частиц. Введение L позволяет сформулировать закон сохранения лептонного числа: в замкнутой системе при всех без исключения процессах взаимопревращаемости элементарных частиц лептонное число сохраняется. Теперь понятно, почему при распаде (258.1) нейтральная частица названа антинейтрино, а при распаде (263.1) — нейтрино. Так как у электрона и нейтрино L= + l, а у позитрона и антинейтрино L=-1, то закон сохранения лептонного числа выполняется лишь при условии, что антинейтрино возникает вместе с электроном, а нейтрино — с позитроном. Основную часть элементарных частиц составляют адроны. К группе адронов относятся пионы, каоны, h-мезон, нуклоны, гипероны, а также их античастицы (в табл.8 приведены не все адроны). Адронам приписывают барионное число (барионный заряд) В. Адроны с В= 0 образуют подгруппу мезонов (пионы,
каоны, h-мезон), а адроны с В=+1 образуют подгруппу барионов (от греч. «барис» — тяжелый; сюда относятся нуклоны и гипероны). Для лептонов и фотона В =0. Если принять для барионов В=+ 1, для антибарионов (антинуклоны, антигипероны) В=-1, а для всех остальных частиц B=0, то можно сформулировать закон сохранения барионного числа: в замкнутой системе при всех процессах взаимопревращаемости элементарных частиц барионное число сохраняется. Из закона сохранения барионного числа следует, что при распаде бариона наряду с другими частицами обязательно образуется барион. Примерами сохранения барионного числа являются реакции (273.1) — (273.5). Барионы имеют спин, равный 1/2 (только спин W--гиперона равен 3/2), т. е. барионы, как и лептоны, являются фермионами. Странность 5 для различных частиц подгруппы барионов имеет разные значения (см. табл. 8). Мезоны имеют спин, равный нулю, и, следовательно, являются бозонами (см. § 226), подчиняясь статистике Бозе — Эйнштейна (см. §235). Для мезонов лептонные и барионные числа равны нулю. Из подгруппы мезонов только каоны обладают S= + l, а пионы и h-мезон имеют нулевую странность. Подчеркнем еще раз, что для процессов взаимопревращаемости элементарных частиц, обусловленных сильными взаимодействиями, выполняются все законы сохранения (энергии, импульса, момента импульса, зарядов (электрического, лептонного и барионного), изоспина, странности и четности). В процессах, обусловленных слабыми взаимодействиями, не сохраняются только изоспин, странность и четность. В последние годы увеличение числа элементарных частиц происходит в основном за счет расширения группы адронов. Поэтому развитие работ по их классификации все время сопровождалось поисками новых, более фундаментальных частиц, которые могли бы служить базисом для построения всех адронов. Гипотеза о существовании таких частиц, названных кварками, была высказана независимо друг от друга (1964) австрийским физиком Дж. Цвейгом (р. 1937) и Гелл-Манном. Название «кварк» заимствовано из романа ирландского писателя Дж. Джойса «Поминки по Финнегану» (герою снится сон, в котором чайки кричат: «Три кварка для мастера Марка»). Согласно модели Гелл-Манна — Цвейга, все известные в то время адроны можно было построить, постулировав существование трех типов кварков (и, d, s) и соответствующих антикварков (и^, d^, s^), если им приписать характеристики, указанные в табл. 9 (в том числе дробные! электрические и барионные заряды). Самое удивительное (почти невероятное) свойство кварков связано с их электрическим зарядом, поскольку еще никто не находил частицы с дробным значением элементарного электрического заряда. Спин кварка равен 1/2, поскольку только из фермионов можно «сконструировать» как фермионы (нечетное число фермионов), так и бозоны (четное число фермионов). Адроны строятся из кварков следующим образом: мезоны состоят из пары кварк — антикварк, барионы — их трех кварков (антибарион — из трех антикварков). Так, например, пион p+ имеет кварковую структуру ud^, пион p-— u^d, каон K+— ds^, протон — uud, нейтрон — udd, S +-гиперон — uus, S 0-гиперон — uds и т. д. Во избежание трудностей со статистикой (некоторые барионы, например W--гиперон, состоят из трех одинаковых кварков (sss), что запрещено принципом
Паули; см.§227) на данном этапе предполагают, что каждый кварк (антикварк) обладает специфической квантовой характеристикой — цветом: «желтым», «синим» и «красным». Тогда, если кварки имеют неодинаковую «окраску», принцип Паули не нарушается. Углубленное изучение модели Гелл-Манна — Цвейга, а также открытие в 1974 г. истинно нейтрального джей-пси-мезона (J/y) массой около 6000 me, временем жизни примерно 10-20 с и спином, равным единице, привело к введению нового кварка — так называемого c-кварка и новой сохраняющейся величины — «очарования» (от англ. charm). Подобно странности и четности, очарование сохраняется в сильных и электромагнитных взаимодействиях, но не сохраняется в слабых. Закон сохранения очарования объясняет относительно долгое время жизни J/y-мезона. Основные характеристики c-кварка приведены в табл. 9. Частице J /y приписывается кварковая структура cc. Структура cc^называется чармонием — атомоподобная система, напоминающая позитроний (связанная водородоподобная система, состоящая из электрона и позитрона, движущихся вокруг общего центра масс). Кварковая модель оказалась весьма плодотворной, она позволила определить почти все основные квантовые числа адронов. Например, из этой модели, поскольку спин кварков равен 1/2, следует целочисленный (нулевой) спин для мезонов и полуцелый — для барионов в полном соответствии с экспериментом. Кроме того, эта модель позволила предсказать также и новые частицы, например W--гиперон. Однако при использовании этой модели возникают и трудности. Кварковая модель не позволяет, например, определить массу адронов, поскольку для этого необходимо знание динамики взаимодействия кварков и их масс, которые пока неизвестны. В настоящее время существует точка зрения, что между лептонами и кварками существует симметрия: число лептонов должно быть равно числу типов кварков. В 1977 г. был открыт сверхтяжелый мезон массой около 20 000me, который представляет собой структуру из кварка и антикварка нового типа —b-кварка (является носителем сохраняющейся в сильных взаимодействиях величины, названной «прелестью» (от англ, beauty)). Заряд b-кварка равен — 1/3. Предполагается, что существует и шестой кварк t с зарядом +2/3, который уже решено назвать истинным (от англ. truth — истина), подобно тому как v-кварк называют очарованным, b-кварк — прелестным. В физике элементарных частиц введен «аромат» — характеристика типа кварка (и, d, s, с, b, t?), объединяющая совокупность квантовых чисел (странность, очарование, прелесть и др.), отличающих один тип кварка от другого, кроме цвета. Аромат сохраняется в сильных и электромагнитных взаимодействиях. Является ли схема из шести лептонов и шести кварков окончательной или же число лептонов (кварков) будет расти, покажут дальнейшие исследования.
Контрольные вопросы • Какова природа первичного и вторичного космического, излучения? Назовите их свойства. • Приведите схемы распада мюонов. Чем объясняется выброс мюонного нейтрино (антинейтрино)? • Приведите схемы распада p-мезонов. Дайте характеристику p-мезонам. • Какие фундаментальные типы взаимодействий осуществляются б природе и как их можно охарактеризовать? Какой из них является универсальным? • Какие законы сохранения выполняются для всех типов взаимодействий элементарных частиц? • Что является фундаментальным свойством всех элементарных частиц? • Назовите свойства нейтрино и антинейтрино. В чем их сходство и различие? • Какие характеристики являются для частиц и античастиц одинаковыми? Какие — разными?
• Что такое странность и четность элементарных частиц? Для чего они вводятся? Всегда ли выполняются законы их сохранения? • Почему магнитный момент протона имеет то же направление, что и спин, а у электрона па-правления этих векторов противоположны? • Какие имеются группы элементарных частиц? Каковы критерии, по которым элементарные частицы относятся к той или иной группе? • Какие законы сохранения выполняются при сильных взаимодействиях элементарных частиц? при слабых взаимодействиях? • Каким элементарным частицам и почему приписывают лептонное число? барионное число? В чем заключаются законы их сохранения? • Зачем нужна гипотеза о существовании кварков? Что объясняется с ее помощью? В чем ее трудность? • Почему потребовалось введение таких характеристик кварков, как цвет и очарование?
Дата добавления: 2015-05-09; Просмотров: 3107; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |