Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм RSA. Алгоритм RSA стоит у истоков асимметричной криптографии




Алгоритм RSA стоит у истоков асимметричной криптографии. Он был предложен тремя исседователями-математиками Рональдом Ривестом (R.Rivest), Ади Шамиром (A.Shamir) и Леонардом Адльманом (L.Adleman) в 1977-78 годах.

Первым этапом любого асимметричного алгоритма является создание пары ключей: открытого и закрытого и распространение открытого ключа "по всему миру". Для алгоритма RSA этап создания ключей состоит из следующих операций:

  1. Выбираются два простых (!) числа p и q
  2. Вычисляется их произведение n(=p*q)
  3. Выбирается произвольное число e (e<n), такое, что НОД(e,(p-1)(q-1))=1, то есть e должно быть взаимно простым с числом (p-1)(q-1).
  4. Методом Евклида решается в целых числах (!) уравнение e*d+(p-1)(q-1)*y=1. Здесь неизвестными являются переменные d и y – метод Евклида как раз и находит множество пар (d,y), каждая из которых является решением уравнения в целых числах.
  5. Два числа (e,n) – публикуются как открытый ключ.
  6. Число d хранится в строжайшем секрете – это и есть закрытый ключ, который позволит читать все послания, зашифрованные с помощью пары чисел (e,n).

Как же производится собственно шифрование с помощью этих чисел:

  1. Отправитель разбивает свое сообщение на блоки, равные k=[log2(n)] бит, где квадратные скобки обозначают взятие целой части от дробного числа.
  2. Подобный блок, как Вы знаете, может быть интерпретирован как число из диапазона (0;2k-1). Для каждого такого числа (назовем его mi) вычисляется выражение ci=((mi)e)mod n. Блоки ci и есть зашифрованное сообщение Их можно спокойно передавать по открытому каналу, поскольку.операция возведения в степень по модулю простого числа, является необратимой математической задачей. Обратная ей задача носит название "логарифмирование в конечном поле" и является на несколько порядков более сложной задачей. То есть даже если злоумышленник знает числа e и n, то по ci прочесть исходные сообщения mi он не может никак, кроме как полным перебором mi.

А вот на приемной стороне процесс дешифрования все же возможен, и поможет нам в этом хранимое в секрете число d. Достаточно давно была доказана теорема Эйлера, частный случай которой утвержает, что если число n представимо в виде двух простых чисел p и q, то для любого x имеет место равенство (x(p-1)(q-1))mod n = 1. Для дешифрования RSA-сообщений воспользуемся этой формулой. Возведем обе ее части в степень (-y): (x(-y)(p-1)(q-1))mod n = 1(-y) = 1. Теперь умножим обе ее части на x: (x(-y)(p-1)(q-1)+1)mod n = 1*x = x.

А теперь вспомним как мы создавали открытый и закрытый ключи. Мы подбирали с помощью алгоритма Евклида d такое, что e*d+(p-1)(q-1)*y=1, то есть e*d=(-y)(p-1)(q-1)+1. А следовательно в последнем выражении предыдущего абзаца мы можем заменить показатель степени на число (e*d). Получаем (xe*d)mod n = x. То есть для того чтобы прочесть сообщение ci=((mi)e)mod n достаточно возвести его в степень d по модулю m: ((ci)d)mod n = ((mi)e*d)mod n = mi.

На самом деле операции возведения в степень больших чисел достаточно трудоемки для современных процессоров, даже если они производятся по оптимизированным по времени алгоритмам. Поэтому обычно весь текст сообщения кодируется обычным блочным шифром (намного более быстрым), но с использованием ключа сеанса, а вот сам ключ сеанса шифруется как раз асимметричным алгоритмом с помощью открытого ключа получателя и помещается в начало файла.




Поделиться с друзьями:


Дата добавления: 2015-05-07; Просмотров: 593; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.