Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Объясните механизм транспорта с химической модификацией субстрата на примере глюкозы




События, связанные с регуляцией транспортных процессов, иногда оказывают существенное влияние на процессы метаболизма в целом. Ярким примером является участие фосфотрансферазной системы в регуляции биосинтеза белков по типу катаболитной репрессии. Оказалось, что уровень сАМР у Escherichia coli облигатно зависит от функционирования фосфотрансферазной системы, причем главную роль в этой связи играет специфический для глюкозы компонент Е 111.В отсутствие глюкозы все компоненты системы, в том числе и Е I 11, находятся в фосфорилированном состоянии за счет резерва PEP. Фосфорилированный Е 111, взаимодействуя с аденилатциклазой, переводит ее в активное состояние, в результате чего внутриклеточный уровень сАМР повышается и активируется транскрипция "слабых" оперонов, в том числе систем транспорта и метаболизма других Сахаров.Напротив, в присутствии глюкозы степень фосфорилирования Е I 11 снижается в связи с переносом фосфорильного остатка на глюкозу в процессе ее транспорта. В результате уменьшается активность аденилатциклазы, снижается уровень сАМР и блокируется транскрипция ряда "сахарных" оперонов.Следует добавить, что нефосфорилированная форма Е I I I, по-видимому, может инактивировать транспортные системы других Сахаров, предотвращая поступление последних в клетку, что еще более усиливает катаболитную репрессию.

Каков же механизм катаболитной реперессии в случае, когда подавляется синтез ферментов, ответственных за катаболизм самой глюкозы, а в качестве более выгодных в энергетическом смысле субстратов выступают, например, органические кислоты или водород? Ведь тогда участие фосфотрансферазной системы невозможно. Одним из способов снижения уровня сАМР может служить активирование его выброса из клетки, например наложением на мембрану ТЭП, т.е. путем "энергизации" мембраны, степень которой, естественно, будет выше всегда, когда используется более выгодный в энергетическом отношении субстрат. Таким образом, если субстрат обеспечивает энергетические потребности клетки и создает необходимую степень "энергизации" мембраны, он может вызывать подавление использования других субстратов, от которых зависит уровень с AMP в клетке.

27. Охарактерезуйте системы «первичного» активного транспорта.

Перенос ионов через клеточную мембрану может происходить против их градиента концентрации за счет энергиaи макроэргических соединений (АТФ). Транспорт ионов через мембрану возбудимых клеток против концентрационного градиента, обусловленный функцией транспортных АТФаз называется первично активным. Первично активный транспорт характерен для переноса через мембрану возбудимых клеток ионов Na+, K+ или Ca2+. Транспортные АТФазы — это интегральный тип белков клеточной мембраны, поэтому ионы могут активно транспортироваться, например, из внеклеточной среды в цитоплазму (ионы K+) или наоборот (ионы Na+).В клетках возбудимых тканей первично активный транспорт осуществляется с помощью трех типов АТФаз: натрий-калиевой, кальциевой и протонной помпы.

Транспорт ионов Na+ и K+ через мембрану.

В мембранах всех клеток организма человека и животных локализована Na+ / K+ -АТФаза, или натрий-калиевый насос Функция этого насоса заключается в поддержании градиента концентрации ионов Na+ и K+ между цитозолем клетки и внеклеточной средой. В возбудимых клетках создание и поддержание подобного градиента является основным условием возникновения потенциала покоя на мембране клеток, а также последующей генерации и распространения потенциала действия по мембране нервного волокна и мышечной клетки.Na+ / K+ -АТФаза состоит из α-и β-белковых субъединиц. Na+ / K+-АТФаза существует в двух конформационных формах — E1 и E2. В конформации АТФ E1 участки насоса, связывающие катионы, обращены в цитоплазму испособны связываться с ионами Na+. В конформации АТФ P-E2 участки связывания катионов обращены во внеклеточную среду и преимущественно связываются с ионами калия. Места связывания локализованы в специальном углублении канала, поэтому во время транспорта ионов Na+ и K+ через мембрану клетки они окружены молекулой насоса и не могут взаимодействовать с другими ионами. За один цикл активности насоса три иона натрия выводятся из клетки, а внутрь транспортируются два иона калия.

Транспорт ионов Ca2+ через мембрану.

В мембране саркоплазматического ретикулума всех типов мышечных клеток локализована Ca2+-АТФаза. Функция этого насоса заключается в поддержании низкой концентрации ионов кальция в цитоплазме мышечных клеток за счет депонирования ионов в саркоплазматический ретикулум. Поддержание низкой концентрации ионов Ca2+ в саркоплазме является основным условием расслабления мышечных клеток. Ca++-АТФ-аза функционирует следующим образом. В присутствии АТФ после присоединения со стороны цитоплазмы иона кальция к кальций-связывающему участку Ca2+-АТФаза фермент изменяет свою конформацию, и область связывания ионов Ca2+ оказывается внутри саркоплазматического ретикулума. При этом сродство ионов к Ca2+-АТФазе уменьшается, и ионы Ca2+ высвобождаются во внутриретикулярное пространство. Под действием ионов Mg2+ саркоплазматического ретикулума фермент Ca2+-АТФаза

дефосфорилируется и кальций-связывающий участок вновь оказывается снаружи мембраны. В такой последовательности повторяется цикл работы кальциевого насоса. В саркоплазме мышечных клеток ионы кальция принимают участие в механизме мышечного сокращения либо выполняют функцию вторичного посредника.

Транспорт протонов через мембрану.

Протонная помпа (H+-АТФаза) транспортирует протоны через внутренние мембраны митохондрий. Протонная помпа в митохондриях увеличивает градиент электрохимического потенциала ионов водорода на мембране до порогового или критического уровня, который необходим для синтеза АТФ. Протонная помпа увеличивает электрическую и концентрационную составляющую электрохимического потенциала на мембране митохондрий.

28. Как функционирует NA-K АТФ-аза?

Натрий-калиевый насос существует в плазматических мембранах всех животных и растительных клеток. Он выкачивает ионы натрия из клеток и загнетает в клетки ионы калия. В результате концентрация калия в клетках существенно превышает концентрацию ионов натрия.

Натрий-калиевый насос - один из интегральных белков мембраны. Он обладает энзимными свойствами и способен гидролизовать аденозинтрифосфорную кислоту (АТФ), являющуюся основным источником и хранилищем энергии метаболизма в клетке. Благодаря этому указанный интегральный белок называется натрий-калийиевой АТФазой. Молекула ATФ распадается на молекулу аденозиндифосфорной кислоты (АДФ) и неорганический фосфат.

Таким образом, натрий-калиевый насос выполняет трансмембранный антипорт ионов натрия и калия. Молекула насоса существует в двух основных конформациях, взаимное преобразование которых стимулируется гидролизом ATФ. Эти конформации выполняют функции переносчиков натрия и калия. При расщеплении натрий-калиевой АТФазой молекулы ATФ, неорганический фосфат присоединяется к белку. В этом состоянии натрий-калиевая АТФаза связывает три иона натрия, которые выкачиваются из клетки. Затем молекула неорганического фосфата отсоединяется от насоса-белка, и насос превращается в переносчик калия. В результате два иона калия попадают в клетку. Таким образом, при расщеплении каждой молекулы ATФ, выкачиваются три иона натрия из клетки и два иона калия закачиваются в клетку. Один натрий-калиевый насос может перенести через мембрану 150- 600 ионов натрия в секунду. Следствием его работы является поддержание трансмембранных градиентов натрия и калия.

Через мембраны некоторых клеток животного (например, мышечных) осуществляется первично-активный транспорт ионов кальция из клетки (кальциевый насос), что приводит к наличию трансмембранного градиента указанных ионов.

29. Что такое система «вторичного активного транспорта»?

Существуют системы транспорта через мембраны, которые переносят вещества из области их низкой концентрации в область высокой концентрации без непосредственного расхода энергии метаболизма клетки (как в случае первично-активного транспорта). Такой вид транспорта называется вторично- активным транспортом. Вторично-активный транспорт некоторого вещества возможен только тогда, когда он связан с транспортом другого вещества по его концентрационному или электрохимическому градиенту. Это симпортный или антипортный перенос веществ.При симпорте двух веществ ион и другая молекула (или ион) связываются одновременно с одним переносчиком прежде, чем произойдёт конформационное изменение этого переносчика. Так как ведущее вещество перемещается по градиенту концентрации или электрохимическому градиенту, управляемое вещество вынуждено перемещаться против своего градиента.Ионы натрия являются обычно ведущими веществами в системах симпорта клеток животного. Высокий электрохимический градиент этих ионов создаётся натрий-калиевым насосом. Управляемыми веществами являются сахара, аминокислоты и некоторые другие ионы. Например, при всасывании питательных веществ в желудочно-кишечном тракте глюкоза и аминокислоты поступают из клеток тонкой кишки в кровь путём симпорта с ионами натрия. После фильтрации первичной мочи в почечных гломерулах, эти вещества возвращаются в кровь той же системой вторично-активного транспорта.

30. Расскажите о транспорте основных компонентов среды – аминокислот, нуклеиновых кислот и белков, углеводов и органических веществ в клетку.

Крупные гидрофильные молекулы (сахара, аминокислоты) перемещаются через мембраны с помощью специальных молекул - мембранных переносчиков. Мембранные переносчики представляют собой интегральные белки, которые имеют центры связывания транспортируемых молекул. Образующаяся связь белка и переносчика является обратимой и обладает высокой степенью специфичности. Транспортируемая молекула проходит через мембрану вследствие изменения конформации белка-переносчика при химическом взаимодействии центров связывания обеих молекул.Транспорт веществ через мембрану, в котором используются транспортные молекулы, называются облегчённой диффузией. Макромолекулы - белки и нуклеиновые кислоты - не могут проникнуть через плазматическую мембрану с помощью механизмов транспорта, рассмотренных выше, из-за своих больших размеров. При трансмембранном транспорте больших молекул сама плазматическая мембрана подвергается согласованным перемещениям, вследствие которых часть жидкой внеклеточной поглощается (эндоцитоз) или часть внутренней среды клетки выделяется (экзоцитоз).В процессе эндоцитоза плазматическая мембрана окружает часть внешней среды, формируя вокруг неё оболочку, в результате чего образуется везикула, которая поступает внутрь клетки. При пиноцитозе образуются небольшие, заполненные жидкостью везикулы. В процессе фагоцитоза формируются большие везикулы, которые содержат твердый материал, например, клетки бактерий.При экзоцитозе транспортируемое вещество синтезируется в клетке, связывается мембраной в везикулы и экспортируется из клетки. Таким образом транспортируются из клетки специфические белки, нуклеиновые кислоты, нейромедиаторы и т.п.

31. Охарактеризуйте основые механизмы регуляции биосинтеза транспортных систем – индукцию, репрессию и катаболитную репрессию и их значение в биотехнологическом процессе

Как и регуляция процессов внутриклеточного метаболизма, она осуществляется на двух уровнях: на уровне биосинтеза белковых посредников и на уровне функционирования готовых посредников. Основными механизмами регуляции биосинтеза переносчиков транспортных систем являются индукция, репрессия и катаболитная репрессия. Как и в случае ферментов, по типу индукции и катаболитной репрессии регулируется биосинтез компонентов тех транспортных систем, субстраты которых участвуют в процессах катаболизма. По типу репрессии избытком субстрата регулируется главным образом биосинтез аминокислотных транспортных систем. Особенность регуляции некоторых транспортных процессов состоит в том, что индукция осуществляется не внутриклеточным субстратом, а внеклеточным субстратом. Такая индукция называется экзогенной и требует наличия промежуточного регуляторного интегрального мембранного белка, передающего сигнал индуктора на репрессор. Подобный тип индукции характерен, например, для транспортной системы гексозофосфатов, фосфоглицерата, некоторых трикарбоновых кислот, а также компонентов фосфотрансферазной системы. Картина регуляции осложняется тем, что у многих организмов для одного и того же субстрата часто используется несколько транспортных систем, отличающихся по специфичности и величине кинетических параметров. Существуют системы с узкой специфичностью, предназначенные только для одного или небольшого числа сходных субстратов, и с широкой специфичностью. Например, у Escherichia coli существуют четыре системы для транспорта ароматических аминокислот: три из них специфичны только для одной из этих аминокислот, а четвертая является общей для всех. Регуляция активности белковых посредников транспортных систем может осуществляться способом обратимой ковалентной модификации или путем нековалентного взаимодействия с эффекторами. В последнем случае, если эффектор взаимодействует с транспортной системой, находясь на той же стороне мембраны, что и субстрат, говорят о цис-регуляции. Например, отрицательная цис-кооперативность обнаруживается при транспорте пролина у Escherichia coli: избыток субстрата тормозит свой собственный транспорт из среды. У галобактерий, наряду с обычными четырьмя транспортными системами для ароматических аминокислот, существует высокоспецифичная - для тирозина, обладающая очень высоким сродством к субстрату, активность которой подавляется избытком тирозина по бесконкурентному типу. Если эффектор взаимодействует с транспортной системой, находясь по разные стороны мембраны относительно субстрата, говорят о транс-регуляции транспорта. Например, некоторые аминокислоты, в частности ароматические, находясь внутри клетки, тормозят свой собственный транспорт из среды. События, связанные с регуляцией транспортных процессов, иногда оказывают существенное влияние на процессы метаболизма в целом. Ярким примером является участие фосфотрансферазной системы в регуляции биосинтеза белков по типу катаболитной репрессии. Оказалось, что уровень сАМР у Escherichia coli облигатно зависит от функционирования фосфотрансферазной системы, причем главную роль в этой связи играет специфический для глюкозы компонент Е 111. В отсутствие глюкозы все компоненты системы, в том числе и Е I 11, находятся в фосфорилированном состоянии за счет резерва PEP. Фосфорилированный Е 111, взаимодействуя с аденилатциклазой, переводит ее в активное состояние, в результате чего внутриклеточный уровень сАМР повышается и активируется транскрипция "слабых" оперонов, в том числе систем транспорта и метаболизма других Сахаров. Напротив, в присутствии глюкозы степень фосфорилирования Е I 11 снижается в связи с переносом фосфорильного остатка на глюкозу в процессе ее транспорта. В результате уменьшается активность аденилатциклазы, снижается уровень сАМР и блокируется транскрипция ряда "сахарных" оперонов. Следует добавить, что нефосфорилированная форма Е I I I, по-видимому, может инактивировать транспортные системы других Сахаров, предотвращая поступление последних в клетку, что еще более усиливает катаболитную репрессию.

32. Каким образом осуществляется выделение веществ из клетки и какое значение имеет этот процесс для решения биотехнологических задач?

Значение выделения продуктов жизнедеятельности организма, В процессе обмена веществ в клетках образуются конечные продукты. Среди них могут быть и ядовитые для клеток вещества. Так, при расщеплении аминокислот, нуклеиновых кислот и других азотсодержащих соединений образуются токсические вещества —аммиак, мочевина и мочевая кислота, которые по мере их накопления подлежат выведению из организма. Должны удаляться» кроме того, избыток воды, углекислый газ, яды, которые поступают вместе с вдыхаемым воздухом, поглощаемой пищей и водой, избыток витаминов, гормонов, лекарственные препараты и т. п. При накоплении этих веществ в организме возникает опасность нарушения постоянства состава и объема внутренней среды организма, что может отразиться на здоровье человека. Бактерии секретируют широкий спектр БАБ — ферменты, токсины, антибиотики и др. Некоторые соединения секретируются в окружающую среду непосредственно через ЦПМ, другие (обычно белки) первоначально попадают в периплазматическую полость в виде предшественников. Предшественник содержит сигнальный пептид, с помощью которого молекула белка проходит во внешнюю среду. На поверхности ЦПМ сигнальная пептидаза отщепляет сигнальный пептид, и этим завершает превращение внутриклеточного предшественника в зрелый секретируемый белок. Процессы выделения в среду определённых соединений из бактериальной клетки нельзя рассматривать как выброс «шлаков»: это скорее механизмы адаптации микроорганизмов к условиям внешней среды, которые требуют конкурентной борьбы либо использования особых полимерных субстратов. В первом случае продукция антибиотиков даёт преимущество штамму-продуценту по сравнению с другими микроорганизмами, во втором — секреция гидролаз позволяет утилизировать труднодоступный субстрат, что обеспечивает их продуцентам успех в борьбе за источники питания в данной экологической нише.




Поделиться с друзьями:


Дата добавления: 2015-05-07; Просмотров: 777; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.