КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Природное сырье и биотехнологии в производстве текстиля
Вся одежда минувших веков вплоть до начала XX столетия изготавливалась исключительно из шерстяных и растительных волокон, которыми одаривала людей природа. Человечеству известны десятки растений, из которых можно получать ткани: хлопок, лен, пенька, джут, рами, кенаф, абака, кендырь, сизаль, манила и другие. Одним из первых растений, которое использовалось для получения одежных материалов, была обыкновенная крапива. Она стала удобным и дешевым сырьем для изготовления грубой ткани, мешковины, рыболовных снастей, веревок, канатов. Дикорастущей крапивы было в избытке. Вплоть до XVII века в Центральной Европе под крапиву отводились большие площади обрабатываемой земли. Впоследствии крапиву потеснили лен, шерстяное, шелковое сырье и пенька. Волокнистые стебли крапивы пригодны для изготовления бумаги и некоторых видов ткани. В Непале рассматривается вопрос о промышленном освоении практически неисчерпаемых зарослей крапивы, которая в предгорьях Гималаев достигает трехметровой высоты и произрастает целыми полями. Центральное швейцарское ведомство по овощеводству признало крапиву культурным растением и рекомендовало ее для массового возделывания. Крапива издавна применяется в народной медицине, благодаря содержащемуся в ней большому числу целебных веществ. Из ее листьев можно получить натуральный краситель, а семена используются в парфюмерии. Высокая урожайность крапивы и ее неистребимая живучесть позволяет ученым видеть в ней источник получения белка в будущем [Клюев, Чистоклет, 1987]. По данным производителей (Германия), ткани из крапивы выглядят как льняные, блестят как шелковые, обладают теплозащитными свойствами как шерстяные [Бузов, Алыменкова, 2004]. Из существующих видов целлюлозных волокон наиболее распространенными для производства одежды в нашей стране являются хлопковые и льняные волокна. Хлопковые волокна покрывают поверхность семян однолетнего растения хлопчатника. Для получения льняного волокна выращивают специальный вид льна - лен-долгунец, представляющий собой однолетнее травянистое растение. По сравнению с хлопком в волокне льна содержится большое количество сопутствующих веществ: присутствие лигнина в составе волокон придает им жесткость, хрупкость и ломкость. При действии светопогоды активизируется процесс окисления целлюлозы кислородом воздуха, что приводит к снижению механических свойств (прочности, удлинения), повышению жесткости и хрупкости волокон. При обработке 20%-м раствором щелочи целлюлозные волокна набухают, распрямляются, сопутствующие низкомолекулярные соединения частично разрушаются, в результате чего повышается прочность волокон, увеличивается их блеск, улучшается способность к окрашиванию и т.п. Подобная обработка используется при мерсеризации хлопчатобумажных тканей. Для получения текстильных материалов используют шерсть различных животных, чаще всего в смеси с овечьей шерстью. Шерстяное волокно изготавливают из шерсти, т.е. волосяного покрова животных: овец, коз, верблюдов и др. Наиболее широкое применение в производстве текстильных материалов получила шерсть овец. Верблюжья шерсть имеет пуховые во- локна длиной 60-70 мм, альпака - шерсть ламы из семейства верблюдовых - тонкое, прочное, мягкое и блестящее волокно. Кашемир - шерсть кашмирских коз, получаемая вычесыванием, - очень тонкое и длинное (до 450 мм) волокно. Мохер (могер, тифтик) - шерсть ангорской козы - представляет собой тонкое, длинное (150-200 мм), мало извитое и блестящее волокно. Ангора - пух ангорского кролика - мягкое, тонкое, водостойкое и молеустойчивое волокно. Шелковое волокно - продукт выделения особых шелкоотделительных желез некоторых насекомых. Промышленное значение имеет шелк, получаемый от гусениц тутового шелкопряда. В период выкармливания гусениц листьями тутового дерева в их теле совершается белковый обмен. Под воздействием ферментов пищеварительного сока белки, содержащиеся в листьях тутового дерева, распадаются на отдельные аминокислоты, которые усваиваются клетками организма гусеницы. Помимо этого в организме происходят синтез аминокислот и перестройка их молекул, т.е. превращение одних аминокислот в другие, В результате к моменту окукливания в теле гусеницы накапливается жидкое вещество с полным набором различных аминокислот, необходимых для создания основного высокомолекулярного соединения натурального шелка - фиброина и шелкового клея - серицина. Шелк особо чувствителен к действию светопогоды. Например, после 200-часовой экспозиции в летнее время волокно шелка теряет 50% первоначальной прочности- значительно больше, чем другие волокна. Шелк становится хрупким, менее эластичным и более гигроскопичным. Волокна животного происхождения (шерстяное и шелковое) состоят из белков - природных высокомолекулярных соединений, к которым относятся кератин (в шерсти), фиброин и серицин (в шелке). Макоромолекулы белков натуральных волокон имеют сложную форму <х-спирали. При внешних воздействиях а-спирали макромолекул могут распрямляться на отдельных участках и переходить в р-спирали. Белковые волокна неустойчивы к действию даже слабых растворов щелочи, но выдерживают действие слабых растворов минеральных кислот и более сильных - органических - без заметных изменений свойств. В состав шерсти помимо кератина (90 %) входит некоторое количество минеральных и жировосковых веществ, пигмента и межклеточного вещества. Волокно шерсти имеет довольно сложное многоклеточное строение. Каждая чешуйка наружного слоя волокна покрыта тонким слоем, состоящим из хитина, воска и других веществ, обладающих большой устойчивостью к кислотам, хлору и другим реактивам. Неоднородное строение основного слоя волокна обусловливает его природную извитость. Наличие сердцевидного срединного слоя повышает толщину и жесткость волокна. По характеру строения шерстяные волокна подразделяются на четыре типа: пух - тонкое, короткое, сильно извитое волокно; переходный волос - более толстое; ость - еще более толстое, жесткое волокно; мертвый волос - толстое, грубое малопрочное волокно. Однородная шерсть содержит преимущественно волокна одного типа и подразделяется на тонкую, полутонкую, полугрубую. Тонкую и полутонкую шерсть используют в производстве тонких костюмных и платьевых тканей, высококачественного трикотажа. Неоднородная шерсть состоит из всех типов волокон. Неоднородную грубую шерсть применяют при изготовлении грубосуконных тканей, войлока, валенок и т.п. Однако природа не может дать текстильные материалы, отвечающие современным запросам наз'ки, техники, производства. Из древесины ели, сосны, пихты, бука, хлопкового пуха получают природную целлюлозу, служащую сырьем для производства гидратцеллюлоз-ных искусственных волокон. По химическому составу гидратцеллюлоза аналогична природной целлюлозе, однако существенно отличается от нее своей физической структурой. Вискозные волокна обладают высокой гигроскопичностью, светостойкостью, мягкостью и стойкостью к истиранию. Однако им свойственен и ряд недостатков, связанных с неоднородной, рыхлой и мало упорядоченной структурой. При увлажнении волокна сильно набухают, что приводит к повышенной усадке текстильных материалов, значительно теряют прочность при растяжении (до 50 %) и устойчивость к истиранию. В нашей стране выпускают высокомодульное вискозное волокно сиблон, которое имеет прочность в нормальных условиях в 1,6 раза выше, чем прочность обычного вискозного волокна, а в мокром состоянии - в 2 раза выше. Сиблон применяется как заменитель средневолокнистого хлопка, в смеси с хлопковыми и синтетическими волокнами и в чистом виде. Тысяча метров тончайшего сиблона весит ОДЗ грамма, и его в самых разных пропорциях можно смешивать с тонковолокнистым хлопком. Искусственные и синтетические волокна дополняют натуральные, придают им такие свойства, которыми природные материалы не обладают. Если в шерсть добавить не более 10% капрона, то это создаст совершенно новую гамму свойств. Профилированные волокна капрона усиливают цепкость и шерстоподобность ткани, снижают ее вес за счет полых волокон. Удлиненные волокна нитрона после тепловой обработки усаживаются и структура их копирует натуральные шерстяные волокна, в результате пряжа становится пушистой. Если в шерстяную пряжу добавить даже более половины нитрона, внешний вид ткани останется неизменным. К шерстяному волокну, состоящему из полимерных молекул, созданных природой, можно прирастить др)тие молекулы, и ткань приобретает новые, необычные для нее свойства. В частности, перестает садиться. После воздействия токов высокой частоты шерстяные волокна практически теряют способность наэлектризовываться. Обработав шерстяную пряжу инфракрасными лучами, можно значительно улучшить ее физико-механические свойства, снизить обрывность, что поднимает производительность труда в ткачестве. На основе биотехнологии ученые разработали несколько способов получения искусственных волокон, которые по своим свойствам мало отличаются от натуральных. К свойствам натуральной шерсти вплотную приблизилось биоПАНволокно. В процессе производства это синтетическое полиакрилонитрильное волокно обрабатывается специальной биомассой из особых микроорганизмов. Проделав разрушительно-созидательную работу, бактерии выдают почти готовый к употреблению продукт, заменяющий шерсть. Дессинаторы, разрабатывающие новые структуры тканей и трикотажных полотен, предложили технологию получения тонких и легких изделий. Переплетение натуральной и синтетической нитей в изделиях рассчитывается таким образом, что внутренняя, прилегающая к телу поверхность изделия хлопчатобумажная, а внешняя - эластичная. Квадратный метр такого полотна более чем на треть легче обычного, что позволяет значительно снизить материалоемкость производства. Приверженцы бионики пытаются скопировать природные «технологии» получения многих веществ, засекреченных бесконечно долгой эволюцией развития органической жизни. Обычная паутина обладает необыкновенно высокой прочностью и эластичностью и состоит из протеинов. Биологи нашли гены, ответственные за процесс протеинового синтеза в насекомых. Они пытаются привить их клеткам дрожжевых микроорганизмов методами генетической инженерии. Кроме пауков, «плести» волокна могут микроскопические грибки плесени. Размножаясь на отходах хлопкового производства, они начинают синтезировать ферменты, расщепляющие целлюлозу. С помощью генетических ухищрений биотехнологии отходы хлопка смогут превратиться в ткани. Химические волокна вытесняют натуральные: с конца 50-х годов XX века натиск рукотворного текстильного сырья остановил рост мирового производства льна, шерсти, шелка. Технология получения армированных волокон, повышающая их прочность в 1,5-2 раза, позволила внедрить новый способ в самые передовые области техники и производства. Например, светопроводящие синтетические волокна заменяют хрупкие стеклянные световоды в волоконной оптике, с которой связано будущее кибернетических машин и информационных систем. Производство армированных ниток, представляющих синтетический полиэфирный стержень, снаружи оплетенный хлопком, имеет широкое применение в швейном и обувном деле. У армированных нитей много достоинств: им не страшны бактерии, плесень, коварные перемены погоды; они устойчивы к агрессивным кислотам (серной и уксусной), щелочам, бензину, машинному маслу. На основе углеродного элемента карбина создано волокно витлан, применяемое в восстановительной хирургии. Способность выделять тепло при прохождении через витлан электрического тока используется при создании костюмов с электроподогревом. Теплозащитные материалы используются в космической промышленности. Углеродное волокно успешно применяется в фильтрах для очистки лекарств и донорской крови, для защиты органов дыхания. Материалы из огнестойкого волокна не боятся мороза вплоть до температуры жидкого азота. Армированные таким волокном резина и стеклопластики могут надежно работать и в космической среде, и в реакторах с резким перепадом температур. Это пока единственный в своем роде синтетический рекордсмен, который наряду с высокой термостойкостью сохраняет прочность и эластичность под длительным радиационным и ультрафиолетовым облучением. Такой уникальный набор достоинств дает сверхстойкому полимеру право занять одно из почетных мест в наиболее перспективных областях науки, техники и производства. При проектировании структуры волокон очень помогло изучение природы. Структура натуральных волокон позволяет им выполнять определенные функции в пределах живого организма, поэтому, копируя структуру натуральных волокон, можно достичь высокой функциональности и эстетики химического волокна. Чтобы производить синтетику с качествами шелка, необходимо объединить усилия ученых и технологов. Это может быть достиг-. нуто за счет разнообразных новых технологических решений, широко применяемых в на- стоящее время. Особенностями шелка, которые копируются в синтетических волокнах, и методами, используемыми для их достижения, являются: блеск - достигается треугольной формой поперечного сечения; драпируемость - обеспечивается снижением давления в местах контакта нитей за счет снижения веса; мягкость- обеспечивается применением улътратонких волокон; объемность - формируется за счет смешанного ткачества и комбинирования обычных волокон с высокорастяжимыми нитями; шелестящий звук- является следствием нерегулярной формы и микроуглублений; натуралоподобный внешний вид - обеспечивается комбинированием различных толщин и форм поперечного сечения и комбинированием нитей и волокон. Для копирования извитости шерсти волокнам полиэстера придается дополнительная извитость за счет использования технологии ложного кручения при максимальном использовании их термопластических свойств. Для этих целей был разработан процесс получения из волокон полиэстера крученой пряжи, подобной шерстяной, путем формирования микропетель за счет текстурирова-ния или за счет получения пушистой поверхности путем местного утолщения. Наиболее трудная задача состояла в том, чтобы достичь противоположных характеристик шерсти, а именно: мягкости и упругости одновременно. Это было достигнуто за счет совместного применения двух приемов: ложного кручения и использования нитей с различным удлинением. Способность к водопоглощению, которая делает хлопок столь привлекательным в теплом и жарком климате, является результатом наличия в его структуре микропор и полостей. Имитация структуры хлопкового волокна позволяет достичь в синтетике таких свойств, как способность к поглощению жидкостей за счет модификации поперечного сечения и повышенной пористости волокна и теплозащитных свойств за счет высокой степени сохранения тепла в полой нити. Однако синтетика не может полностью заменить хлопок, в связи с чем разрабатываются новые искусственные целлюлозные волокна. Примером таких волокон являются волокна, известные под маркой Lyocel, которые сочетают положительные свойства хлопка и синтетического волокна. Химические волокна обладают многими особенностями свойств, не присущими натуральным волокнам. К таким свойствам относятся: одновременная способность к поглощению влаги и водоупорность; электропроводимость; антибактериальные и аромопрофилакти-ческие свойства; устойчивость к действию ультрафиолетовых излучений; антимикробные свойства; очень малый вес [New fibers]. Некоторые высокомолекулярные соединения можно наполнить лекарственными веществами. Сделанные из таких волокон (биолана, иодина, летулана) ткани будут' защищать живой организм от болезнетворных микробов. Многие медики облачены в халаты и костюмы из специальной антимикробной ткани. Она соткана из ионообменных волокон. В перспективе - создание лечебных видов тканей и полотен, где лекарственные вещества будут оказывать целительное действие на определенные участки кожи человека или на весь организм в целом. Одним из последних достижений в области технологии получения текстильных материалов из химических волокон является материал Shin-gosen, который может быть определен как одежный материал, отвечающий различным вкусам и назначению, благодаря сочетанию свойств синтетических и натуральных волокон. Разработка данного материала - это результат применения целого ряда новых комбинированных текстильных и других технологий, направленных на создание материалов, способных удовлетворить различные эстетические требования. Материал Shin-gosen нельзя отнести к ранее известным химическим материалам, таким как нейлон и полиэстер. Это новая категория волокнистого материала, в основе производства которого лежат как уже известные технологии, так и вновь разработанные. Наиболее широко при производстве данного материала применяется смешанное прядение в сочетании с поверхностной обработкой. Смешанное прядение волокон с различными уровнями усадки придает материалам объемность. Применение ложной крутки в сочетании с использованием прядения филаментных нитей с различными уровнями удлинения обеспечивает получение шерстоподобной поверхности материала. Такие материалы отличаются высоким качеством, хорошей драпируемостью, большим разнообразием, которые не могут быть достигнуты в материалах из обычных волокон и нитей. Технология получения материала Shin-gosen позволяет получать материал с различным туше. Компания Nisshinbo разработала ряд новых изделий, которые выглядят так, как будто бы сделаны вручную, путем применения 1/f колебаний процесса прядения, ткачества или вязания. Такие колебания широко распространены в природе, например в дуновении ветерка или ропоте ручья, и дают чувство умиротворения. 1/f колебания могут быть названы ритмом природы. Они широко наблюдаются в природных явлениях и дают нам чувство расслабления. В общем, природные явления и натуральные материалы имеют нерегулярности, которые приятны или неприятны для нас в зависимости от их состояния. Типичная природная нерегулярность напоминает нерегулярную волну, не имеющую каких-либо закономерностей. Тем не менее, анализируя такие нерегулярности, можно установить, что они являются результатом: комбинации простых элементарных волн. Когда мы наблюдаем длину элементарных волн в диапазоне из частот, определенные природные нерегулярности дают обратную пропорциональную зависимость между длиной волны и частотой. Такие нерегулярности названы 1/f колебаниями. Присутствие 1/f колебаний в природных явлениях дают не только расслабление, но и создают ощущение красоты. Таким образом, они не только являются универсальным ритмом природы, но и тесно связаны с комфортом и красотой. Компания Nisshinbo применила понятие 1/f колебаний к пряжам и текстилю и разработала процесс образования пряжи с 1/f колебанием при помощи специальной системы прядения, которая может управлять конструкцией объекта. Эта пряжа сделана промышленным способом, но выглядит так, как будто сделана вручную. Такая пряжа используется в производстве носовых платков, занавесок, джинсовых тканей и т.п. Эти изделия имеют неоднородную поверхность и создаются для того, чтобы позволить нам расслабиться. До настоящего времени однородная поверхность была наиболее важным требованием качества в промышленном изделии, поэтому идея производить шероховатые изделия с природной нерегулярностью промышленным путем является новой и революционной. Разработаны текстильные материалы, способные изменять свой цвет в зависимости от условий окружающей среды (материалы-хамелеоны), а также обладающие радужной переливчатой поверхностью. Существуют технологии получения материалов-хамелеонов на основе применения явлений фотохроизма (изменение цвета под воздействием света), термо-хроизма (изменение цвета под воздействием температуры), влагохроизма (изменение цвета под воздействием влажности). Получение подобного эффекта достигается методом печати или путем применения фотохромных материалов. Разработан термохромный одежный материал Sway путем включения в структуру микрокапсул, содержащих теплочувствительные красители. Микрокапсулы равномерно наносятся на поверхность материала и покрываются сверху полиуретановой смолой. Они сделаны из стекла и содержат краситель, который реагирует на температуру, и в зависимости от этого окрашивается или обесцвечивается. Sway - многоцветный материал, включающий 4 основных цвета и 64 цветовых комбинации, которые изменяются при изменении температуры не более чем на 5°С. Компанией Kanebo Ltd разработан материал Comik-relief с печатным рисунком из микрокапсул, содержащих фото-хромный материал, который первоначально бесцветен, но под действием ультрафиолетового излучения с длиной волны 350-400 мкм может менять цвет от светло-голубого до темно-синего. В природе существует множество элементов, которые могут быть использованы при создании цвета, например оболочка жемчуга, перья павлина, бразильская бабочка Морфо-ала, которые изменяют цвет при изменении угла падения света. Оболочка жемчуга имеет многослойную структуру, а призматические перья павлина изменяют цвет благодаря решетчатой структуре, состоящей из тонких пластин меланина. Морфо-ала проявляет металлический кобальтовый синий цвет вследствие параллельного расположения канавок, образуемых чешуйками, расположенными в виде лестницы. Профессор К. Мацумото разработал многослойную светоотражающую флуоресцирующую пленку, которая наносится в виде дополнительного слоя на волокноподобные пленки, толщиной 0,2-0,5 мкм, используя технологию изготовления металлизированных нитей. При этом волокно принимает заданный оттенок и может приобретать переливчатую (радужную) окраску. Нить, скрученная из таких волокон, приобретает различные оттенки благодаря интерференции падающего света. Сегодня такие радужные переливчатые нити широко применяются в производстве различных текстильных материалов и являются еще одним достижением человечества, полученным на основе изучения природных явлений. Контрольные вопросы 1. Примеры формообразования в природе. 2. Законы распознавания структуры биоформы. 3. Принципы пластической взаимосвязи элементов биоформы. 4. Примеры тектонических систем биоформ. 5. Свойства натуральных текстильных волокон, влияющие на тектоническое решение формы. / 6. Ошовные методы дизайнерской бионики. 7. Примеры структурного формообразования животных, насекомых, растений, которые являются прообразами предметных структур. 8/ Геометрическая «унификация» в природе. 9. Природные аналоги для разработки комбинаторного элемента. 10. Симметричные образования в природе.
Дата добавления: 2015-05-09; Просмотров: 3496; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |