Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Наблюдение и измерение цифровых изображений




 

Цифровое изображение хранится в памяти компьютера, в общем случае, в виде прямоугольной матрицы, элементы которой несут информацию об оптических плотностях или цвете элементарных участков изображения, а номера i строки и j столбца элемента определяют его положение в матрице. Нумерация строк и столбцов матрицы цифрового изображения начинается с нуля.

Рис.1.1

Координаты центров пикселей определяют в левой прямоугольной системе координат оC xC уC (рис.1.1a), началом которой является левый верхний угол цифрового изображения и в правой - оC xC уC (рис.1.1b), началом которой левый нижний угол цифрового изображения. В обеих системах координат ось x параллельна строкам, а ось y – столбцам матрицы цифрового изображения.

Левая система координат принята при записи изображений в файл во всех форматах и используется в большинстве программ по обработке изображений. В фотограмметрии традиционно применяется правая система координат снимка, и в большинстве современных цифровых фотограмметрических систем используют именно эту систему координат.

Пиксельные координаты (единицей измерения, в этом случае, является пиксель) центров пикселей в системе координат цифрового изображения оC хC уC определяют по формулам:

. (1.1)

Для измерения координат точек цифрового изображения его визуализируют на экране дисплея. Если пиксель изображения на экране дисплея соответствует пикселю исходного цифрового изображения, то с помощью “мыши” или клавиатуры компьютера можно навести измерительную марку, формируемую в виде цифрового изображения на экране дисплея, на точку изображения с точностью до одного пикселя.

Для получения подпиксельной (субпиксельной) точности можно увеличить матрицу изображения на экране монитора относительно исходного цифрового изображения. В этом случае каждый пиксель исходного изображения будет изображаться матрицей n×n пикселей, численное значение всех элементов a'ij которой будут равны численному значению элемента матрицы исходного изображения.

Пиксельные координаты точек увеличенного изображения можно измерить с точностью до 1/n пикселя исходного изображения (рис.1.2.).

Рис. 1.2

Пиксельные координаты (в пикселях исходного изображения) элемента a'ij увеличенного изображения определяют по формуле:

, (1.2)

в которых: i,j - номера строки и столбца элемента матрицы исходного изображения, в котором находится элемент a'ij увеличенного изображения:

i’,j’ - номера строки и столбца элемента a`ij подматрицы n×n;

n – коэффициент увеличения изображения.

Например, для элемента a’23 (рис.1.2) пиксельные координаты:

Значения физических координат центров пикселей цифрового изображения можно определить по значениям их пиксельных координат, если известны физические размеры стороны пикселя изображения Δ (предполагается, что пиксель имеет форму квадрата).

Значения физических координат определяют по формулам:

. (1.3)

Например, координаты центра пикселя, соответствующего элементу a’23 (рис.1.2) при величине Δ=20 мкм будут равны хc = 34 мкм и yc = 50 мкм.

В некоторых цифровых системах начало системы координат цифрового изображения оc хc уc выбирают в центре пикселя, расположенного в нижнем левом углу цифрового изображения (рис.1.3).

Рис.1.3

В этом случае значения пиксельных координат вычисляют по формулам:

, (1.4)

при измерениях с точностью до пикселя и по формулам:

, (1.5)

при измерениях с подпиксельной точностью.

Например, для того же элемента a’23 (рис.1.3) пиксельные координаты равны:

Рассмотренный выше метод измерения цифрового изображения с подпиксельной точностью требует его увеличения на экране дисплея компьютера. Однако, даже при увеличении цифрового изображения только в два раза, на экране дисплея исходный аналоговый снимок изображается с весьма значительным оптическим увеличением. Так, например, снимок, преобразованный на сканере, с размером пикселя 14 мкм на экране дисплея с размером зерна 0.28 мм при увеличении цифрового изображения снимка в 2 раза имеет оптическое увеличение 40 раз. Такое увеличение приводит к значительному ухудшению изобразительных свойств наблюдаемого изображения и, как следствие, к снижению точности наведения измерительной марки на измеряемые объекты на изображении.

С целью обеспечения возможности измерения координат точек цифрового изображения с подпиксельной точностью без увеличения исходного изображения разработан метод измерения цифровых изображений, в котором цифровое изображение снимка может смещаться относительно неподвижной измерительной марки с шагом в n – раз меньшим размера пикселя.

Принцип измерения координат точек цифрового изображения по этому методу иллюстрируется на рис.1.4.

Рис. 1.4

 

На рис.1.4а представлен фрагмент исходного цифрового изображения с измерительной маркой (в виде креста) и точкой изображения m, координаты которой необходимо измерить. Как следует из этого рисунка, центр изображения измерительной марки не совпадает с изображением точки m, причем разности значений их пиксельных координат составляют величины DxP и DyP.

Для совмещения центра изображения измерительной марки с точкой m можно создать фрагмент цифрового изображения снимка, в котором координаты начала системы координат o’с x’с yс будут иметь значения , а .

Создание такого фрагмента цифрового изображения производится следующим образом. По координатам центра каждого пикселя фрагмента изображения x’pi, y’pi определяют значения координат его проекции xpi, ypi в системе координат ос хс ус исходного изображения.

Их значения определяют по формулам:

. (1.6)

Затем по значениям координат xpi, ypi находят ближайшие к изображению точки i, соответствующей центру пикселя

Рис. 1.5

создаваемого фрагмента цифрового изображения, четыре пикселя исходного цифрового изображения, например, M, K, L, N (рис.1.5)

Далее методом билинейного интерполирования определяют значения оптической плотности i -го пикселя создаваемого фрагмента изображения по формуле:

, (1.7)

в которой

.

Таким же образом формируются все элементы (пиксели) создаваемого фрагмента цифрового изображения.

На экране дисплея, на визуализированном фрагменте созданного цифрового изображения центр измерительной марки будет совмещен с изображением точки m. Пиксельные координаты точки m изображения в системе координат исходного изображения определяются по формулам 1.6.

Необходимо отметить, что создание фрагмента цифрового изображения требует значительных вычислительных процедур. Поэтому для достижения эффекта перемещения изображения на экране дисплея относительно марки в “реальном масштабе” времени фрагмент изображения не должен иметь большие размеры.

В случае если для измерений используются цветные цифровые изображения при формировании элементов создаваемого изображения методом билинейного трансформирования по формулам (1.7) определяются интенсивности красного (R), зеленого (G) и синего (В) компонентов цветного изображения.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 514; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.