КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Канонические уравнения прямой
Как составить уравнения прямой в пространстве? УравнениЯ прямой в пространстве
Аналогично «плоской» прямой, существует несколько способов, которыми мы можем задать прямую в пространстве. Начнём с канонов – точки и направляющего вектора прямой: Если известна некоторая точка пространства , принадлежащая прямой, и направляющий вектор данной прямой, то канонические уравнения этой прямой выражаются формулами: Приведённая запись предполагает, что координаты направляющего вектора не равны нулю. Что делать, если одна или две координаты нулевые, мы рассмотрим чуть позже. Как и в статье Уравнение плоскости, для простоты будем считать, что во всех задачах урока действия проводятся в ортонормированном базисе пространства. Пример 1 Составить канонические уравнения прямой по точке и направляющему вектору Решение: Канонические уравнения прямой составим по формуле: Ответ: И ежу понятно… хотя, нет, ежу не понятно вообще ничего. Что следует отметить в этом очень простом примере? Во-первых, полученные уравнения НЕ НАДО сокращать на единицу: . Сократить, точнее, можно, но это непривычно режет глаз и создаёт неудобства в ходе решения задач. А во-вторых, в аналитической геометрии неизбежны две вещи – это проверка и зачёт: На всякий случай смотрим на знаменатели уравнений и сверяемся – правильно ли там записаны координаты направляющего вектора . Нет, не подумайте, у нас не урок в детском садике «Тормозок». Данный совет очень важен, поскольку позволяет полностью исключить ошибку по невнимательности. Никто не застрахован, а вдруг неправильно переписали? Наградят премией Дарвина по геометрии. Далее подставляем координаты точки в найденные уравнения: Получены верные равенства, значит, координаты точки удовлетворяют нашим уравнениям, и сама точка действительно принадлежит данной прямой. Проверка очень легко (и быстро!) выполняется устно. В ряде задач требуется найти какую-нибудь другую точку , принадлежащую данной прямой. Как это сделать? Берём полученные уравнения и мысленно «отщипываем», например, левый кусочек: . Теперь этот кусочек приравниваем к любому числу (помним, что ноль уже был), например, к единице: . Так как , то и два других «куска» тоже должны быть равны единице. По сути, нужно решить систему: Проверим, удовлетворяет ли найденная точка уравнениям : Получены верные равенства, значит, точка действительно лежит на данной прямой. Выполним чертёж в прямоугольной системе координат. Заодно вспомним, как правильно откладывать точки в пространстве: Строим точку : Строим точку : отмеряем две единицы «на себя» (желтый пунктир), одну единицу вправо (синий пунктир) и две единицы вниз (коричневый пунктир). Коричневый пунктир и сама точка наложились на координатную ось, обратите внимание, что они находятся в нижнем полупространстве и ПЕРЕД осью . Сама прямая проходит над осью и, если меня не подводит глазомер, над осью . Не подводит, убедился аналитически. Если бы прямая проходила ЗА осью , то следовало бы стереть ластиком частичку линии сверху и снизу точки скрещивания. У прямой бесконечно много направляющих векторов, например: Получился в точности исходный вектор , но это чистая случайность, такую уж я выбрал точку . Все направляющие векторы прямой коллинеарны, и их соответствующие координаты пропорциональны (более подробно – см. Линейная (не) зависимость векторов. Базис векторов). Так, векторы тоже будут направляющими векторами данной прямой. Дополнительную информацию о построении трёхмерных чертежей на клетчатой бумаге можно найти в начале методички Графики и свойства функций. В тетради разноцветные пунктирные дорожки к точкам (см. чертёж) обычно тонко прочерчивают простым карандашом тем же пунктиром. Разберёмся с частными случаями, когда одна или две координаты направляющего вектора нулевые. Попутно продолжаем тренировку пространственного зрения, которая началась в начале урока Уравнение плоскости. И вновь я расскажу вам сказку о голом короле – нарисую пустую систему координат и буду убеждать вас, что там есть пространственные прямые =) Проще перечислить все шесть случаев: 1) Для точки и направляющего вектора канонические уравнения прямой распадаются на три отдельных уравнения: . Или короче: Пример 2: составим уравнения прямой по точке и направляющему вектору : Что это за прямая? Направляющий вектор прямой коллинеарен орту , значит, данная прямая будет параллельна оси . Канонические уравнения следует понимать так: В частности, уравнения задают саму ось . Действительно, «икс» принимает любое значение, а «игрек» и «зет» всегда равны нулю. Рассматриваемые уравнения можно интерпретировать и другим образом: посмотрим, например, на аналитическую запись оси абсцисс: . Ведь это уравнения двух плоскостей! Уравнение задаёт координатную плоскость , а уравнение – координатную плоскость . Правильно думаете – данные координатные плоскости пересекаются по оси . Способ, когда прямая в пространстве задаётся пересечением двух плоскостей, мы рассмотрим в самом конце урока. Два похожих случая: 2) Канонические уравнения прямой, проходящей через точку параллельно вектору , выражаются формулами . Такие прямые будут параллельны координатной оси . В частности, уравнения задают координатную саму ось ординат. 3) Канонические уравнения прямой, проходящей через точку параллельно вектору , выражаются формулами . Данные прямые параллельны координатной оси , а уравнения задают саму ось аппликат. Загоним в стойло вторую тройку: 4) Для точки и направляющего вектора канонические уравнения прямой распадаются на пропорцию и уравнение плоскости . Пример 3: составим уравнения прямой по точке и направляющему вектору : Разберём суть полученной записи. Уравнение задаёт плоскость в пространстве, причём данная плоскость будет параллельна «родной» координатной плоскости . Из пропорции легко выразить уравнение «плоской» прямой, единственное, эта прямая будет находиться не на плоскости , а на высоте . Если высота нулевая: , то уравнения принимают вид , и вот это уже в точности наша «плоская» прямая, лежащая в плоскости . Таким образом, рассмотренный случай задаёт прямую, параллельную координатной плоскости . Действительно, задумайтесь, ведь направляющий вектор параллелен данной плоскости, ведь «зетовая» координата равна нулю. 5) Прямая, заданная точкой и направляющим вектором , параллельна координатной плоскости , и её канонические уравнения выражаются формулами: . В частности, уравнения определяют прямую, лежащую в плоскости . 6) Прямая, заданная точкой и направляющим вектором , параллельна координатной плоскости , и её канонические уравнения выражаются формулами: . В частности, уравнения определяют прямую, лежащую в плоскости . Настала пора хорошо закусить: Пример 4 Записать канонические уравнения прямой, если известна точка и направляющий вектор данной прямой. а) Это примеры для самостоятельного решения, ответы в конце урока. Постарайтесь не пренебрегать примерами данного урока! Задачи вроде бы элементарны, но если на них забить, то в дальнейшем появятся серьёзные затруднения. Причём, в простых вещах.
Дата добавления: 2015-05-10; Просмотров: 2023; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |