Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 2.4 Приборы и методы измерения мощности и энергии




Амперметр был разработан так, чтобы внутреннее сопротивление было как можно меньше. Поэтому, если вы включите не последовательно, а параллельно нагрузке обстоятельства могут быть непредсказуемые. Именно в последствии малого сопротивления внутри через амперметр потечет большой ток, что приведет к тому, что прибор сгорит или погорят провода.

Тема 2.3 Приборы и методы измерения тока

Методы измерения токов. Устройство, принцип действия, технические характеристики, разновидности, область применения основных типов амперметров, токоизмерительных клещей. Расширение пределов измерения с помощью трансформаторов тока и шунтов. Применение комбинированных приборов для измерения тока. Выбор прибора для измерения тока, включение в цепь, измерение, обработка результата измерения.

Методические указания

При изучение методов измерения тока необходимо вспомнить закон Ома. Перед измерением тока (напряжения) нужно иметь представление о его частоте, форме, ожидаемом значении, требуемой точности измерения и сопротивлении цепи,в которой производится измерение. Эти предварительные сведения позволятвыбрать наиболее подходящий метод измерения и измерительный прибор. Для измерения тока и напряжения применяют метод непосредственной оценки и метод сравнения. Для измерения тока в какой-либо цепи последовательно в цепь включают амперметр.

Амперметр – измерительный прибор для определения силы постоянного и переменного тока в электрической цепи. Показания амперметра всецело зависят от величины протекающего через него тока, в связи, с чем сопротивление амперметра по сравнению с сопротивлением нагрузки должно быть как можно меньшим. По своим конструктивным особенностям амперметры подразделяются на магнитоэлектрические, электромагнитные, термоэлектрические, электродинамические, ферродинамические и выпрямительные.

Магнитоэлектрические амперметры служат для измерения силы тока малой величины в цепях постоянного тока. Они состоят из магнитоэлектрического измерительного механизма и шкалы с нанесенными делениями, соответствующими различным значениям измеряемого тока.

Электромагнитные амперметры предназначены для измерения силы протекающего тока в цепях постоянного и переменного тока. Чаще всего используются для измерения силы в цепях переменного тока промышленной частоты (50 Гц). Состоят из измерительного механизма, шкала которого размечена в единицах силы тока, протекающего по катушке прибора. Для изготовления катушки можно использовать провод большого сечения и, следовательно, измерять ток большой величины (свыше 200 А).

Термоэлектрические амперметры применяются для измерения в цепях переменного тока высокой частоты. Они состоят из магнитоэлектрического прибора с контактным или бесконтактным преобразователем, который представляет собой проводник (нагреватель), к которому приварена термопара (она может находиться на некотором расстоянии от нагревателя и не иметь с ним непосредственного контакта). Ток, проходя по нагревателю, вызывает его нагрев (за счет активных потерь), который регистрируется термопарой. Возникающее термическое излучение воздействует на рамку магнитоэлектрического измерителя тока, которая отклоняется на угол, пропорциональный силе тока в цепи.

Электродинамические амперметры служат для измерения силы тока в цепях постоянного и переменного токов повышенной (до 200 Гц) частот. Приборы очень чувствительны к перегрузкам и внешним магнитным полям. Применяются в качестве контрольных приборов для проверки рабочих измерителей силы тока. Состоят из электродинамического измерительного механизма, катушки которого в зависимости от величины максимально измеряемого тока соединены последовательно или параллельно, и градуированной шкалы. При измерении токов малой силы катушки соединяются последовательно, а большой – параллельно.

Ферродинамические амперметры прочны и надежны по конструкции, малочувствительны к воздействию внешних магнитных полей. Они состоят из ферродинамического измерительного аппарата и применяются главным образом в системах автоматических контроллеров в качестве самопишущих амперметров.

Каждый амперметр рассчитывается на некоторое определенное максимальное значение измеряемой величины. Но, часто, возникают ситуации, когда необходимо выполнить измерение некоторой величины, значение которой больше пределов измерения прибора. Тем не менее, всегда оказывается возможным расширить пределы измерения данным прибором. Для этого параллельно амперметру присоединяют проводник, по которому проходит часть измеряемого тока. Значение сопротивления этого проводника рассчитывается так, чтобы сила тока, проходящего через амперметр, не превышала его максимально допустимого значения. Такое сопротивление называется шунтирующим. Результатом подобных действий станет то, что если амперметром, рассчитанным, например, на силу тока до 1 А, необходимо выполнить измерение тока в 10 раз больше, то сопротивление шунта должно быть в 9 раз меньше сопротивления амперметра. Разумеется, при этом цена градуировки увеличивается в 10 раз, а точность во столько же раз уменьшается.

Для расширения предела измерения амперметра (в k раз) в цепях постоянного тока служат шунты-резисторы, включаемые параллельно амперметру.

Шкалы амперметров обычно градуируют непосредственно в единицах силы тока:

амперах, миллиамперах или микроамперах. Нередко в лабораторной практике

применяет многопредельные амперметры. Внутри корпуса таких приборов размещают несколько различных шунтов, которые подключаются параллельно индикатору с помощью переключателя пределов измерений. На лицевой панели многопредельных приборов указывают максимальные значения силы тока, которые могут быть измерены при том или ином положении переключателя пределов измерений. Цена деления шкалы (если у прибора имеется единственная шкала) будет разной для каждого предела измерений. Часто многопредельные приборы имеют несколько шкал, каждая из которых соответствует определенному пределу измерений.

 

 

Вопросы для самопроверки

 

1. Как измерить силу тока?

2. Что такое амперметр?

3. Основные типы амперметров

4. Как подключается амперметр?

5. Назначение шунтов

 

Методы измерения мощности и электроэнергии. Устройство, принцип действия, технические характеристики, разновидности, область применения: ваттметров и электросчётчиков. Выбор приборов для измерения мощности и электроэнергии, включение их в цепь, измерение, обработка результатов измерения. Расширение пределов измерения.

Методические указания

При изучении методов измерения мощности электрических цепей опять необходимо вспомнить закон Ома. Из выражения для мощности на постоянном токе Р = IU видно, что ее можно измерить с помощью амперметра и вольтметра косвенным методом. Однако в этом случае необходимо производить одновременный отсчет по двум приборам и вычисления, усложняющие измерения и снижающие его точность.

Для измерения мощности в цепях постоянного и однофазного переменного тока применяют приборы, называемые ваттметрами, для которых используют электродинамические и ферродинамические измерительные механизмы.

Мощность в электрических цепях измеряют прямым и косвенным способами. При прямом измерении используют ваттметры, при косвенном — амперметры и вольтметры.

В системах электроснабжения применяются измерительные приборы электрических величин. Наиболее применимыми являются амперметры, вольтметры, измерители мощности (ваттметры и варметры), счетчики активной и реактивной энергии. При выборе приборов измерения электрических величин следует учитывать род тока – постоянный или переменный.

Для измерения активной мощности применятся ваттметры. Ваттметры имеют две измерительные катушки, тока и напряжения. Момент вращения, создаваемый этими катушками, пропорционален протекающим через них токам.

Для измерения потребляемой электроэнергии применяют однофазные или трехфазные счетчики электрической энергии. Эти приборы имеют индукционные измерительные механизмы.

Ваттметр – измерительный прибор, имеющий назначение определять работу совершаемую электрическим током в единицу времени для прохождения тока через какой-либо проводник (определение мощности электрического тока или электромагнитного сигнала).

Ваттметр может определить количество ваттов необходимых для получения некоторой силы электрического света в каждую секунду времени или определить величину выполняемой работы в единицу времени каким-либо электрическим прибором. Работа совершаемая электрическим прибором в единицу времени (его мощность) определяется в ваттах и является произведением числа амперов (сила тока) потребляемых данным видом электрических потребителей на разность потенциалов (+ -) концов этой части цепи измеряемой в вольтах.

Для определения мощности электрического тока и используются ваттметры, представляющие собой не что иное, как электродинамометр. Проходящий ток распределяется на две части, одна из которых является, по сути, контролем, а вторая опытом, изменяя сопротивление на опытной части и измеряя разность потенциалов на выходе и определяется мощность электрического тока.

По назначению и диапазону частот ваттметры можно разделить на три основные категории:
– низкочастотные (и постоянного тока);
– радиочастотные;
– оптические.

Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и ее вывода пользователю ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

Низкочастотные ваттметры используются преимущественно в сетях электропитания промышленной частоты для измерения потребляемой мощности, могут быть однофазные и трехфазные. Отдельную подгруппу составляют варметры - измерители реактивной мощности. Цифровые приборы обычно совмещают в себе возможность измерения активной и реактивной мощности.

Радиочастотные ваттметры образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Деление этой подгруппы связано в основном с применением различных типов первичных преобразователей. Выпускаемые ваттметры используют преобразователи на базе термистора, термопары или пикового детектора; значительно реже, применяются датчики, основанные на других принципах. При работе с ваттметрами поглощаемой мощности следует помнить, что из-за несогласования входного сопротивления приемных датчиков с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не реальную мощность линии, а поглощенную, которая отличается от действительной.

Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. К недостаткам термисторных ваттметров относится их малый диапазон регистрации – несколько милливатт.

Расширение пределов измерения на постоянном токе по напряжению производится с помощью добавочных сопротивлений — шунтов. При измерениях на переменном токе расширение пределов производится с помощью трансформаторов тока и напряжения. При этом необходимо соблюдать правильность включения генераторных клемм ваттметра.
Измерение мощности в трехфазных трехпроводных сетях производится с помощью двух однофазных ваттметров, включенных в две фазы.
Расширение пределов измерения производится с помощью трансформаторов тока и напряжения. В этих же сетях для измерения мощности применяется трехфазный ваттметр.
В трехфазных четырехпроводных сетях измерение активной мощности производят с помощью трех однофазных ваттметров или одним трехэлементным ваттметром.
Реактивная мощность в однофазных сетях измеряется с помощью одного ваттметра, включенного по схеме, а в трехфазных — с помощью трех ваттметров.

 

Вопросы для самопроверки

 

1. Дайте определения и аналитические выражения ак­тивной и реактивной мощности.

2. Каковы методы измерения активной мощности в цепях постоянного и однофазного переменного тока?

3. Нарисуйте схему измерителя реактивной мощности.

4. Какие методы используются для измерения актив-
ной мощности и энергии в трехфазных цепях?

 




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 5772; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.032 сек.