КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нолфи, Париси
Китано Косвенное кодирование
Самый известный подход к реализации этой идеи базируется на Системах Линдемайра, или L-системах. Этот формализм был изначально грамматическим подходом к моделированию морфогенеза растений. Грамматика L-системы состоит из набора правил, использовавшихся для генерации строки-описания структуры. Процесс применения правил называется переписыванием строк (string-rewriting). К начальному символу S последовательно применяются правила переписывания строк, пока мы не получим строчку только из терминальных символов. В 1990 году Китано разработал грамматику генерации графов (Graph Generation Grammar -GGG). Все правила имеют вид: Алфавит этой грамматики содержит символы трех типов: нетерминальных N={A,B,:,Z}, предтерминальных P={a,b,:,p} и терминальных T={0,1}. Грамматика состоит из двух частей: переменной и постоянной. Переменная часть записывается в геном и состоит из последовательности описаний правил грамматики. Все символы из левой части правил должны быть нетерминальными, а из правой часть — из множества N?P. Постоянная часть грамматики содержит 16 правил для каждого предтерминального символа слева, и матрицы 2*2 из {0,1} справа. Для терминальных символов также задаются грамматические правила. Ноль раскрывается в матрицу 2*2 из нулей, а единичка — в матрицу и единиц. При работе с такими представлениями геномов могут встречаться ситуации, когда в переменной части не задается правила для нетерминального символа, который однако использовался в правой части одного из описанных правил. Такие символы объявляются <мертвыми>, и переписываются точно так же, как нули. Процесс декодирования состоит из последовательных применений правил из генома к начальному символу S. Количество применений правил задается в начале. Полученная матрица интерпретируется следующим образом: если на диагонали элемент (i,i)=1, то ему соответствует нейрон. Все элементы (i,j) обозначают связь нейрона i с нейроном j, если они оба существуют. Все обратные связи удаляются.
В начале процесса декодирования все нейроны помещаются на плоскости в точках, заданных их координатами. Затем они индексируются. Индекс скрытых нейронов определяется их координатой х. Если у двух нейронов их х-овые координаты совпадают, то больший номер получает тот нейрон, который был считан из генома позже (д.е. закодирован дальше, чем другой). Индексы всех входных и выходных нейронов рассчитываются иначе. Каждому нейрону в генотипе также соответствует параметр тип. Для входных нейронов индекс равен I = type mod N(input), а для выходных нейронов он рассчитывается по формуле j = N — N(output) + type mod N(output). Где N(input) — количество входов в нейронную сеть, N(output) — количество выходов из нейронной сети. Очевидно, что некоторые входные и выходные нейроны будут иметь один и тот же индекс. Поэтому, при декодировании к нейронной сети добавляется N(input) входных и N(output) выходных реальных нейронов, к которым присоединены входы и выходы сети. Каждый такой дополнительный нейрон связывается со всеми нейронами с соответствующим индексом. После декодирования всех нейронов и размещения их в пространстве, из каждого нейрона начинает строиться дерево связей. Обычно оно рассчитывается как фрактал, но конкретный метод его вычисления не важен. Длины сегментов-ветвей дерева, и угол между ветвями задается при описании каждого нейрона в геноме. Связь между нейронами устанавливается, если одна из ветвей графа подход к другому нейрону меньше, чем на установленной заранее пороговое значение. Изначально обучение записанных таким образом сетей отдельно не проводилось, они эволюционировали вместе с весовыми коэффициентами, которые также записывались в геном. Но подобное представление может применяться и исключительно для построения структуры сети, а веса могут рассчитываться и по стандартным алгоритмам.
Дата добавления: 2015-05-10; Просмотров: 397; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |