Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Радикальный признак Коши




Огюстен Луи Коши – еще более знаменитый французский математик. Биографию Коши вам может рассказать любой студент технической специальности. В самых живописных красках. Не случайно эта фамилия высечена на первом этаже Эйфелевой башни.

Признак сходимости Коши для положительных числовых рядов чем-то похож на только что рассмотренный признак Даламбера.

Радикальный признак Коши: Рассмотрим положительный числовой ряд . Если существует предел: , то:
а) При ряд сходится. В частности, ряд сходится при .
б) При ряд расходится. В частности, ряд расходится при .
в) При признак не дает ответа. Нужно использовать другой признак. Интересно отметить, что если признак Коши не даёт нам ответа на вопрос о сходимости ряда, то признак Даламбера нам тоже не даст ответа. Но если признак Даламбера не даёт ответа, то признак Коши вполне может «сработать». То есть, признак Коши является в этом смысле более сильным признаком.

Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда общий член ряда ПОЛНОСТЬЮ находится в степени, зависящей от «эн». Либо когда корень «хорошо» извлекается из общего члена ряда. Есть еще экзотические случаи, но ими голову забивать не будем.

Пример 7

Исследовать ряд на сходимость

Мы видим, что общий член ряда полностью находится под степенью, зависящей от , а значит, нужно использовать радикальный признак Коши:

Таким образом, исследуемый ряд расходится.

(1) Оформляем общий член ряда под корень.
(2) Переписываем то же самое, только уже без корня, используя свойство степеней .
(3) В показателе почленно делим числитель на знаменатель, указывая, что
(4) В результате у нас получилась неопределенность . Здесь можно было пойти длинным путем: возвести в куб, возвести в куб, потом разделить числитель и знаменатель на «эн» в старшей степени. Но в данном случае есть более эффективное решение: можно почленно поделить числитель и знаменатель прямо под степенью-константой. Для устранения неопределенности делим числитель и знаменатель на (старшую степень).
(5) Собственно выполняем почленное деление, и указываем слагаемые, которые стремятся к нулю.
(6) Доводим ответ до ума, помечаем, что и делаем вывод о том, что ряд расходится.

А вот более простой пример для самостоятельного решения:

Пример 8

Исследовать ряд на сходимость

И еще пара типовых примеров.

Полное решение и образец оформления в конце урока

Пример 9

Исследовать ряд на сходимость
Используем радикальный признак Коши:

Таким образом, исследуемый ряд сходится.

(1) Помещаем общий член ряда под корень.
(2) Переписываем то же самое, но уже без корня, при этом раскрываем скобки, используя формулу сокращенного умножения: .
(3) В показателе почленно делим числитель на знаменатель и указываем, что .
(4) Получена неопределенность вида . Здесь можно прямо в скобке почленно поделить числитель на знаменатель на «эн» в старшей степени. Нечто подобное у нас встречалось при изучении второго замечательного предела. Но здесь ситуация другая. Если бы коэффициенты при старших степенях были одинаковыми, например: , то фокус с почленным делением уже бы не прошел, и надо было бы использовать второй замечательный предел. Но у нас эти коэффициенты разные (5 и 6), поэтому можно (и нужно) делить почленно (кстати, наоборот – второй замечательный предел при разных коэффициентах при старших степенях уже не прокатывает).
(5) Собственно выполняем почленное деление и указываем, какие слагаемые у нас стремятся к нулю.
(6) Неопределенность устранена, у нас остался простейший предел: . Почему в бесконечно большой степени стремится к нулю? Потому-что основание степени удовлетворяет неравенству . Если у кого есть сомнения в справедливости предела , то я не поленюсь, возьму в руки калькулятор:
Если , то
Если , то
Если , то
Если , то
Если , то
… и т.д. до бесконечности – то есть, в пределе:
(7) Указываем, что и делаем вывод о том, что ряд сходится.

Пример 10

Исследовать ряд на сходимость

Это пример для самостоятельного решения.

Иногда для решения предлагается провокационный пример, например: . Здесь в показателе степени нет «эн», только константа. Тут нужно возвести в квадрат числитель и знаменатель (получатся многочлены), а далее придерживаться алгоритма из статьи Ряды для чайников. В подобном примере сработать должен либо необходимый признак сходимости ряда либо предельный признак сравнения.

 




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 909; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.