КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интегральный признак Коши
Разочарую тех, кто плохо усвоил материал первого курса. Для того чтобы применять интегральный признак Коши необходимо более или менее уверенно уметь находить производные, интегралы, а также иметь навык вычисления несобственного интеграла первого рода. В учебниках по математическому анализу интегральный признак Коши дан математически строго, но слишком уж поморочено, поэтому я сформулирую признак совсем примитивно, но понятно. И сразу примеры для пояснения. Интегральный признак Коши: Рассмотрим положительный числовой ряд . Данный ряд сходится или расходится вместе с соответствующим несобственным интегралом. Пример 11 Исследовать ряд на сходимость Почти классика. Натуральный логарифм и какая-нибудь бяка. Основной предпосылкой использования интегрального признака Коши является тот факт, что в общем члене ряда есть некоторая функция и её производная. Из темы Производная вы наверняка запомнили простейшую табличную вещь: , и у нас как раз такой канонический случай. Как использовать интегральный признак? Сначала берем значок интеграла и переписываем со «счётчика» ряда верхний и нижний пределы: . Затем под интегралом переписываем «начинку» ряда с буковкой «хэ»: . Чего-то не хватает…, ах, да, еще в числителе нужно прилепить значок дифференциала: . Теперь нужно вычислить несобственный интеграл . При этом возможно два случая: 1) Если выяснится, что интеграл сходится, то будет сходиться и наш ряд . 2) Если выяснится, что интеграл расходится, то наш ряд тоже будет расходиться. Повторюсь, если материал запущен, то чтение параграфа будет трудным и малопонятным, поскольку применение признака по сути дела сводится к вычислению несобственного интеграла первого рода. Полное решение и оформление примера должно выглядеть примерно так: Используем интегральный признак: Подынтегральная функция непрерывна на Таким образом, исследуемый ряд расходится вместе с соответствующим несобственным интегралом. Пример 12 Исследовать ряд на сходимость Решение и образец оформления в конце урока В рассмотренных примерах логарифм также мог находиться под корнем, это не изменило бы способа решения. И еще два примера на закуску Пример 13 Исследовать ряд на сходимость По общим «параметрам» общий член ряда вроде бы подходит для использования предельного признака сравнения. Нужно всего лишь раскрыть скобки и Поэтому мы используем интегральный признак Коши: Подынтегральная функция непрерывна на ! Примечание: полученное число – не является суммой ряда!!! Пример 14 Исследовать ряд на сходимость Решение и образец оформления в конце урока, который подходит к концу. Да. Возможно, у некоторых возник вопрос, почему я начал этот урок с таким энтузиазмом? Всё просто – начался учебный год, а мне не нужно на учебу!!! Я столько мучался =(Что даже не устал в заключительных аккордах этой статьи. В целях окончательного и бесповоротного усвоения темы числовых рядов посетите урок Знакочередующиеся ряды. Признак Лейбница. Примеры решений. Желаю успехов! Решения и ответы: Пример 3: Используем признак Даламбера: Пример 5: Используем признак Даламбера: Пример 8: Пример 10: Пример 12: Пример 14: Автор: Емелин Александр
Дата добавления: 2015-05-10; Просмотров: 514; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |