Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Погрешность косвенных измерений




 

Пусть искомая величина f определяется из прямых измерений величины a,т.е. f = f(a). Разлагая f(a) в ряд Тэйлора, получим в окрестности точку

 

(7)

 

Из (7) получим

 

(8)

 

Относительная погрешность величины f(a) равна

 

(9)

 

Важно подчеркнуть, что доверительная вероятность для f такова же, что и для величины a.

Если искомая величина f = f(a, b,c…) - т.е. функция многих переменных (находится из результата прямых измерений величин a, b,c…), то найдя заданной доверительной вероятностью a = 0,95 полуширину доверительного интервала каждой из величин a, b,c... (погрешности Da, Db, Dc...), найдем величину погрешности Df и ef по формулам:

 

(10)

 

(11)

 

Например, . В данном случае проще сначала найти относительную погрешность согласно (11)

 

 

.

 

Вычислив eV, найдем и . Погрешности Dh и DD найдем по (6).

При вычислении производных в (10), (11) все величины считаются постоянными, кроме той переменной, по которой находится производная.

Окончательный результат косвенных измерений величины запишем как и при прямых измерениях

 

 

В заключении приведем порядок обработки результатов измерений.

 

Прямые измерения

 

1.Результаты каждого измерения записываются в таблицу. Цена наименьшего деления прибора как правило записывается в таблицу. Поэтому, во-первых, результаты измерения необходимо записывать до наименьшей цены деления прибора, во-вторых, не следует “на глаз” находить доли деления.

2.Находится среднее арифметическое из результатов проведенных измерений.

3.Находятся погрешности результатов отдельных измерений и их квадраты .

4.Задается значение доверительной вероятности a = 0,95 и по заданной a и числу измерений n по таблице определяется коэффициент Стьюдента.

5.По формуле (6) находят полуширину доверительного интервала Da искомой величины (абсолютную погрешность результата), относительную погрешность e и записывают окончательный результат.

 

Косвенные измерения

1.Для каждой серии прямых измерений величин a,b,c..., входящих в расчетную формулу, искомой величины f, проводится обработка результатов так, как это описано выше. При этом для всех измеряемых величин задают одно и то же значение надежности a.

2.Находится выражение для абсолютной и относительной погрешности искомой величины согласно (10) и (11).

3.Вычисляются абсолютная и относительная погрешности результата косвенных измерений и записывается окончательный результат.

Примечание. Так как при n £ 10 значение определяется с погрешностью более 30%, то следует выполнять три правила:

- погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 или 2, и одной - если первая есть 3 и более;

- результат измерения округляется до того же десятичного разряда, которым оканчиваются округленное значение абсолютной погрешности;

- округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним - двумя лишними знаками.

При сложении и вычитании приближенных чисел окончательный результат округляется так, чтобы он не имел значащих цифр в тех разрядах, которые отсутствуют хотя бы в одном из приближенных данных. При других математических операциях в результате оставить столько значащих цифр, сколько их осталось после операций сложения и вычитания в наименее точном числе.




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 446; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.