КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Момент силы относительно оси
Момент силы относительно точки Рассмотрим гайку, которую затягивают гаечным ключом определенной длины, прикладывая к концу ключа мускульное усилие. Если взять гаечный ключ в несколько раз длиннее, то прилагая то же усилие, гайку можно затянуть значительно сильнее. Из этого следует, что одна и та же сила может оказывать различное вращательное действие. Вращательное действие силы характеризуется моментом силы. Понятие момента силы относительно точки ввел в механику итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452--1519). Моментом силы относительно точки называется произведение модуля силы на ее плечо: М0(?) = РИ. Точка, относительно которой берется момент, называется центром момента. Плечом силы относительно точки называется кратчайшее расстояние от центра момента до линии действия силы. Единица момента силы: [М] = [У7] [/; ] = сила х длина = ньютон х метр = Н * м. Условимся считать момент силы положительным, если сила стремится вращать свое плечо вокруг центра момента против часовой стрелки, и наоборот (рис. 3.4). Одна и та же сила относительно разных точек может давать и положительный и отрицательный момент. Момент силы относительно точки, лежащей на линии действия этой силы, равен нулю, так как в этом случае плечо равно нулю. Момент силы относительно точки не меняется при перенесении силы вдоль линии ее действия, так как модуль силы и плечо остаются неизменными. Лемма о проекциях позволяет ввести в рассмотрение новую характеристику силы по отношению к оси. Определение. Моментом силы F относительно оси z называется алгебраическая величина, равная проекции на эту ось момента силы относительно произвольной точки указанной оси. mz(F)=прz mA(F) (A принадлежит z) (17) Рассмотрим способ вычисления и свойства момента. Пользуясь произволом выбора центра моментов на оси, выберем в качестве такового т.О- проекцию точки А приложения силы на ось z. Обозначив через к орт оси z, и применив круговую перестановку в смешанном произведении, запишем
Здесь учтено, что ввиду взаимной перпендикулярности векторов k и OA, модуль произведения kxOA равен расстоянию ОА точки приложения сил до оси. Формула показывает, что: а) Момент относительно оси дает только составляющая силы, направленная по касательной t к окружности радиуса h. . Из Рис.8 вытекаетaб) Знак момента определяется знаком Cos Рис.8 следующее правило знаков: ^ Момент силы относительно оси положителен, если с конца оси видно, что сила стремится повернуть тело против часовой стрелки. /2). Это происходит, когдаpИз формулы (12) вытекает, что момент силы относительно оси равен нулю в cлучае, если сила и ось лежат в одной плоскости (a=
1. 2. ^
Задание этих величин и определяет силу . Точка приложения силы должна быть задана дополнительно координатами х, у, z. Кроме того, силу можно задавать проекциями на оси . Тогда Эти формулы позволяют, зная проекции силы на оси координат найти ее модуль и углы с осями, т.е. определить силу. Зная проекции, можно построить вектор геометрически. Для плоскости формулы (2.2.1) и (2.2.2) запишутся Построение в плоскости производится по 4-й аксиоме статики. Рассмотрим теперь аналитический способ сложения сил. Зависимость между векторами и их проекциями дает следующая теорема: Проекция вектора суммы на какую-нибудь ось равна алгебраической сумме проекций слагаемых векторов на ту же ось (рис. 15 ).
Дата добавления: 2015-05-10; Просмотров: 637; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |