Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Способы очистки газообразных выбросов в атмосферу




ЭКОЛОГИЧЕСКИЕ ПРИНЦИПЫ РАЦИОНАЛЬНОГО ИСПОЛЬЗОВАНИЯ ПРИРОДНЫХ РЕСУРСОВ И ОХРАНЫ ПРИРОДЫ

 

Глава10. Экозащитная техника и технологии защиты атмосферы

 

 

Снижение попадания вредных веществ в атмосферу достигается введением разнообразных методов очистки. Принципиально отличаются подходы к системам очистки газов от химических и механических примесей. Химические компоненты удаляются при помощи физико-химических методов поглощения (сорбции), для удаления механических загрязнений – пыли, существует специальное, пылеулавливающее оборудование. Для удаления органических примесей целесообразно использовать биотехнологию.

С целью улавливания газообразных примесей применяют процессы конденсации, сорбции (абсорбции и адсорбции), хемосорбции, а превращают загрязнители в безвредные соединения посредством термохимических (термическая деструкция, термическое и термокаталитическое окисление) и химических процессов. Соответствующие аппараты называются конденсаторами, абсорберами, адсорберами, установками (печами) термодеструкции (пиролиза, крекинга, риформинга), термоокисления (дожигания), термокаталитическими установками (печами, реакторами), химическими реакторами.

В практике газоочистки применяют три основных способа очистки выбросов в атмосферу от вредных паров и газов: абсорбция жидкостями, адсорбция твердыми поглотителями, каталитические методы очистки.

Некоторые жидкости и твердые вещества при контакте с многокомпонентной газовой средой способны избирательно извлекать из нее отдельные ингредиенты и поглощать (сорбировать) их.

1) Абсорбцией называется перенос компонентов газовой смеси в объем соприкасающейся с ней конденсированной фазы. При абсорбции происходит избирательное поглощение одного или нескольких компонентов из газовой смеси жидкими поглотителями. Обратный процесс, т.е. удаление из объема конденсированного вещества поглощенных молекул газа, называется дегазацией или де(аб)сорбцией.

Процесс, завершающийся растворением абсорбата в поглотителе, называют физической абсорбцией. При физической абсорбции происходит физическое растворение абсорбируемого компонента в растворителе, при этом молекулы абсорбента и молекулы абсорбтива не вступают между собой в химическое взаимодействие.

Иногда растворяющийся газ вступает в химическую реакцию непосредственно с самим растворителем. Процесс, сопровождающийся химической реакцией между поглощаемым компонентом и абсорбентом, называют химической абсорбцией (хемосорбция). При хемосорбции абсорбируемый компонент вступает в химическую реакцию с поглотителем, образуя новые химические соединения в жидкой фазе.. Такие процессы специфичны и разрабатываются конкретно для каждого вида выбросов и набора загрязнителей.

Аппараты, в которых осуществляют процесс абсорбции, называют абсорберы. Скорость абсорбции зависит от ряда факторов, главным образом, давления и температуры. С ростом давления и температуры скорость абсорбции повышается.

В качестве абсорбента можно в принципе использовать любую жидкость, которая растворяет извлекаемый компонент. Но для применения в промышленных масштабах абсорбент должен отвечать ряду требований, среди них: необходимая поглотительная способность (абсорбционная ёмкость), высокая селективность (избирательность) по отношению к поглощаемому компоненту, невысокая летучесть, небольшая вязкость, способность к регенерации, быть термохимически устойчивыми, не проявлять коррозионную активность, доступность и невысокая стоимость. Желательно, чтобы поглотительный раствор имел более высокую, чем вода, температуру кипения.

При физической абсорбции обычно используют в качестве абсорбента воду, а также органические растворители и неорганические, не реагирующие с извлекаемыми компонентами и их водными растворами. При хемосорбции в качестве абсорбента используют водные растворы солей, органические вещества и водные суспензии различных веществ.

Для абсорбции газообразных загрязнителей с ограниченной растворимостью в воде, таких как SO2 или бензол, необходимы очень большие количества воды. Вода обладает высокой эффективностью при удалении кислых растворимых газов, таких как HCl, HF и SiF4 при использовании слабощелочной воды, для улавливания NH3 подкисленной водой. Газы с меньшей растворимостью, например SO2, Cl2 и H2S, легче абсорбируются не чистой водой, а щелочными растворами, в частности, разбавленным NaOH или водным раствором (суспензией) извести, т.е. в последнем случае более приемлема хемосорбция.

Целесообразно применять абсорбцию, если концентрация данного компонента в газовом потоке составляет свыше 1 %. Абсорбция – наиболее распространенный процесс очистки газовых смесей во многих отраслях, например, в химической промышленности. Абсорбцию широко применяют для очистки выбросов от сероводорода, других сернистых соединений, паров соляной, серной кислот, цианистых соединений, органических веществ (фенола, формальдегида и др.).

2 ) Адсорбцией называют процесс избирательного поглощения компонента газа, пара или раствора с помощью адсорбентов – пористых твердых материалов с большой удельной поверхностью. Процессы адсорбции являются избирательными и обратимыми. Каждый поглотитель обладает способностью поглощать лишь определенные вещества и не поглощать другие. Поглощенное вещество всегда может быть выделено из поглотителя путем десорбции. В отличие от абсорбционных методов адсорбция позволяет проводить очистку газов при повышенных температурах. Различают физическую и химическую адсорбцию.

а) Физическая адсорбция

Физическая адсорбция основана на процессах, при которых молекулы газа прилипают к поверхности твердого тела под действием межмолекулярных сил притяжения (силы Ван-дер-Ваальса).

б) Химическая адсорбция (хемосорбция)

Происходит химическое взаимодействие между адсорбентом и адсорбируемым веществом. Меняется химический состав адсорбата, следовательно, процесс необратим. Этот способ широко применяется при удалении больших концентраций загрязняющих веществ. При невысоких концентрациях эффективен для удаления летучих углеводородов и органических растворителей. Применяется в случаях, когда загрязняющий газ невозможно сжечь.

При адсорбции возможны очень большие скорости поглощения и полное извлечение компонентов, выделение которых путем абсорбции было бы невозможно из-за их малой концентрации в смеси. Адсорбцию применяют для очистки газов с невысоким содержанием газообразных или парообразных загрязнений до получения их очень низких объемных концентраций. Адсорбцию применяют для улавливания из газов, вентиляционных выбросов сернистых соединений, углеводородов, хлора, окислов азота, паров органических растворителей и др.

На настоящее время адсорбция остается самым универсальным средством очистки выбросов от газообразных загрязнителей, а наиболее универсальным адсорбентом - активированный уголь. Посредством адсорбции принципиально возможно извлечь из выбросов любой загрязнитель в широком диапазоне концентраций. Однако высококонцентрированные загрязнители (ориентировочно с концентрациями более 5·103 кг/м3) удобнее подвергать предварительной обработке (конденсацией, абсорбцией) для снижения их концентраций. Необходима также предварительная обработка (осушка) сильно увлажненных газов.

3) Помимо механических, физических и химических методов очистки газов широко применяют термохимическое обезвреживание. Методы сжигания вредных примесей, способных окисляться, находят все большее применение для очистки дренажных и вентиляционных выбросов. Эти методы выгодно отличаются более высокой степенью очистки, отсутствием в большинстве случаев коррозионных сред и исключением сточных вод.

По типу происходящих реакций методы термообезвреживания можно разделить на восстановительные и окислительные. Термовосстановительные методы специфичны и разрабатываются индивидуально для каждого конкретного загрязнителя. Из них к настоящему времени в технике газоочистки нашли применение способы восстановления (с использованием аммиака) NOх до N2, SO2 до S2 и некоторые другие.

Из всех термоокислительных процессов для термообезвреживания пригодны исключительно реакции с кислородом, поскольку при участии иных окислителей принципиально невозможно получить безвредные продукты окисления. Возможности термоокислительного метода обезвреживания ограничиваются количеством отбросных газов и содержанием в них горючих компонентов. Если концентрация горючих компонентов выбросов не достигает нижнего предела воспламенения ("бедные" горючим выбросы), то их огневая обработка требует дополнительного расхода топлива на прогрев выбросов до температуры самовоспламенения, которая для паров углеводородов составляет около 500...750°С. Температурный уровень процесса термокаталитического окисления несколько ниже (обычно 350...500°С), что также требует соответствующих затрат топлива.

К перспективным способам обработки больших объемов выбросов с невысокими концентрациями органических газообразных загрязнителей можно отнести схему термообезвреживания с предварительным концентрированием загрязнителей посредством адсорбции. Такая схема может быть технически и экономически приемлемой при начальной концентрации загрязнителя выше 50 мг/м3. Теплоту, выделяющуюся при сгорании загрязнителей, можно достаточно легко утилизировать. Если концентрация горючих загрязнителей может быть доведена ориентировочно до (5...8)·10-3 кг/м3, то термообработку можно организовать с незначительным добавлением топлива.

Представляются перспективными способы обработки отбросных газов, основанные на переводе парообразных загрязнителей в конденсированное состояние и последующей фильтрации образовавшегося аэрозоля. Если загрязнители имеют невысокое давление насыщенных паров, то может быть приемлемой конденсация посредством повышения давления и понижения температуры выбросов. Пары загрязнителей легкокипящих веществ могут быть подвергнуты обработке химическими реагентами таким образом, чтобы продукты реакции имели низкие давления насыщенных паров. При этом способы химической обработки необходимо подбирать так, чтобы была возможна утилизация улавливаемого продукта.

4) Конденсацию газообразных примесей обычно включают в технологический цикл, если процесс сопровождается ощутимыми потерями промежуточных или конечных продуктов. Часто посредством конденсации улавливают и возвращают в технологический процесс пары растворителей, удаляемых с поверхности изделий после нанесения функциональных, защитных и окрашивающих слоев. Иногда конденсацию применяют для извлечения из газового потока ценных (дорогостоящих) или особо опасных веществ.

Как правило, в конденсированное состояние переводят пары легкокипящих соединений с концентрациями не ниже 5 – 10 г/м3. Конденсация более разбавленных загрязнителей представляет технически сложную задачу и требует значительных затрат.

При использовании конденсации степень извлечения, как правило, в пределах 70...80%, поэтому в качестве самостоятельного средства санитарной очистки этот метод не используют.

В то же время конденсационная обработка может успешно применяться в многоступенчатых схемах очистки выбросов. Существуют три направления в области газоочистки, где конденсация необходима:

· предварительное осаждение основной массы паров загрязнителей перед адсорберами при высокой степени загрязнения выбросов;

· парциальное извлечение паров, содержащих соединения фосфора, мышьяка, тяжелых металлов, галогенов перед термообезвреживанием смеси загрязнителей;

· конденсация загрязнителей после химической обработки с целью перевода в легкоконденсируемые соединения, например, после хемосорбционных аппаратов.

Метод конденсации наиболее эффективен в случае углеводородов и других органических соединений, имеющих достаточно высокие температуры кипения, при обычных условиях и присутствующих в газовой фазе в относительно высоких концентрациях. Для удаления загрязнителей, имеющих достаточно низкое давление пара при обычных температурах, можно использовать конденсаторы с водяным и воздушным охлаждением. Для более летучих растворителей возможна двухстадийная конденсация с использованием водяного охлаждения на первой стадии и низкотемпературного – на второй.

Предварительная обработка конденсацией целесообразна в тех случаях, когда перед основной обработкой газовой поток необходимо охладить, например, при осуществлении адсорбции.

 




Поделиться с друзьями:


Дата добавления: 2015-05-31; Просмотров: 2202; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.