КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Карбид кремния
Карбид кремния SiС - это полупроводниковое соединение типа AIV ВIV. Карбид кремния - полиморфный материал, т.е. может иметь 2 кристаллические структуры: гексагональную и кубическую типа сфалерита, Полупроводниковыми свойствами обладает гексагональный SiC, в котором каждый атом Si находится в тетраэдрическом окружении атомов С и наоборот (рисунок 3.15). Для SiC существует более 100 политипов, отличающихся размещением в кристаллической решетке слоев атомов Si и их чередованием. Рисунок 3.15 Разная структура политипов обусловливает разные электрические свойства: ширина запрещенной зоны (2,3-3,33) эВ, подвижность электронов (0,33-1) м2/(В.с). Механические и химические свойства слабо зависят от структуры. Все политипы SiC твердые, по твердости уступают только алмазу. Благодаря высокой твердости SiC используется как абразивный для механической обработки материалов. Примеси в SiC изменяют не только тип проводимости, концентрацию носителей, но и его цвет. Чистый SiC стехиометрического состава (70% Si и ЗО%С) бесцветный. Принеси У группы (N,P,As, Sb,Bi) и Fе в SiС дают зеленую окраску и электропроводность n-типа, а элементы Ca, Mg - голубую окраску; В, Al,Ga, In -фиолетовую, и электропроводность p-типа. Избыток Si приводит к n-SiC, а избыток С - к р-SiC. Диффузию примесей в SiC проводят в закрытом объеме при Т = 1800-2200)°С. Донорные примеси (N, Р, As, Sb, Bi) имеют низкий коэффициент диффузии, поэтому для формирования в Si р-n-переходов берут исходный SiC, легированный азотом, n-типа проводимости и диффузией вводят акцепторную примесь бора. Такие p-n-переходы являются основой светодиодов желтого излучения. Принцип действия светодиодов основан на способности SiC люминесцировать в видимой области с любым цветом излучения, красным, желтым, зеленым, синим при введении примесей (активаторов люминесценции) соответственно, бериллия, бора, скандия, алюминия. На базе SiC создают оптроны - ПП приборы, объединяющие источник света (светодиод) и приемник света (фотодиод). ПП приборы на SiC отличаются тем, что могут работать при более высоких температурах (таблица 3.1), в химически агрессивных средах, при высоких уровнях радиации. 3.6.6. Полупроводниковые соединения AIII BV Эти соединения образуются на основе элементов III группы таблицы Д.И.Менделеева (В, Al, Ga, In) и элементов У группы - N, Р, As, Sb. Изучение этих соединений ведется с 60-х годов XX века, и к настоящему времени наибольший интерес представляют: GaAs - арсенид галлия, GaP - фосфид галлия, InSb - антимонид индия, InAs - арсенид индия, InР - фосфид индия. Освоение производства любого из соединений AIIIBV является сложной технологической задачей, так как этим соединениям присущ ряд недостатков. 1) Низкая растворимость легирующих примесей не более 1.1018 см-3 2) Отсутствие собственных оксидов на поверхности исключает возможность изготовления из соединений AIIIBV МОП-транзисторов. Единственной конструкцией полевого транзистора является транзистор Рисунок 3.16 3) Токсичность реагентов AsCl3, AsH3, PH3, используемых Образование в процессах обработки арсенидов и фосфидов, вредных для окружающей среды отходов, требует необходимости их тщательного улавливания и обезвреживания. Например, при шлифовке фосфидов может образовываться чрезвычайно ядовитый газ - фосфин, а при растворении арсенидов в присутствии восстановителей - арсин. 5) Все фосфиды и арсениды при нагреве с большей или меньшей скоростью теряют летучие компоненты By - As или Р, т.е. являются разлагающимися по схеме: АIII BV - АIII (Ж) + 1/2 В2 (газ). Это создает трудности при проведении отжига, диффузии. В области применения наиболее универсальным является арсенид галлия GaAs. Это один из основных материалов СВЧ-техники и оптоэлектроники (рисунок 3.17).
Рисунок 3.17 Арсенид галлия был первым ПП, на котором в 1962г. был создан инжекционный лазер, т.е. осуществлена генерация когерентного излучения (одной длины волны) с помощью р-n перехода. Лазерный эффект возникает лишь в случае, если плотность тока через р-n переход превышает некоторое пороговое значение. На GaAs за счет электролюминесценции создаются светодиоды ИК-излучения, которые наиболее эффективны в оптронах и волоконно-оптических линиях связи. Светодиоды видимой области, обеспечивающие в информационных каналах связь аппаратуры с ее пользователями, изготовляются на фосфиде галлия GaP, имеющем ширину запрещенной зоны больше 1,7 эВ. Широкозонные AIII BV (см. таблицу 3.2) являются материалами для СВЧ-техники, благодаря высокой подвижности электронов. ИМС на GaAs обладают большим быстродействием, чем ИМС на кремнии. Но технология ИМС на GaAs требует совершенствования техники эпитаксии, освоения технологии ионного легирования вместо диффузии, лазерного отжига вместо термического, электронно-лучевой литографии вместо фотолитографии и разработки новых методов осаждения защитных покрытий. Узкозонные AIIIBV (InSb, InAs), обладающие высокой подвижностью электронов, служат для изготовления магниторезисторов и преобразователей Холла. 3.6.7. Соединения AIIBVI и другие халькогенидные полупроводники Халькогениды - это соединения серы, селена, теллура с металлами. Наиболее изученными являются ПП халькогениды - сульфиды, селениды, теллуриды цинка, кадмия (AIIBVI) и свинца (AIVBVI). Свойства халькогенидов еще в большей степени, чем в случае Si, Ge, AIIIBV, зависят от технологии. При повышенных температурах компоненты халькогенидов обладают резко отличающимися упругостями пара. Если в соединениях AIIIBV давление паров Рa«Pb (при повышенных температурах улетучивается, испаряется компонент В), то в халькогенидах возможны варианты: 1)Рa≈Pb(СdTe, ZnTe); 2)Pа<Рв (CdS, ZnTe, CdSe); 3)Ра«Рв(PbS, PbSe, PbTe), т.е. при повышенных температурах соединения AIIBVI разлагаются по реакции: 2АIIBVI → 2АII газ + B2VI газ Важной особенностью соединений AIIBVI является то, что они могут проявлять электропроводность лишь одного типа независимо от характера легирования. Например, CdS, ZnS, CdSe, ZnSe являются ПП n-типа проводимости, а ZnТе - p-типа. И только CdTe может быть n- и p-типа проводимости. Таким образом, AIIBVI в технологическом отношении трудные объекты. Применение халькогенидов связано с ярким проявлением фоторезистивных и люминесцентных свойств. Самым чувствительным фоторезистором CdS является е видимой части спектра: при освещении его сопротивление уменьшается в 104 - 106 раз. В качестве люминофоров чаще всего используется ZnS и твердые растворы ZnS + ZnSe или ZnS + CdS. Эти катодолюминофоры используются для кинескопов черно-белых телевизоров, обладают высокой яркостью и светоотдачей в видимой области спектра. В халькогенидах Рb при низких температурах происходят процессы излучательной рекомбинации носителей заряда и это используется для создания лазеров ИК-диапазона. На базе PbTe изготавливают термоэлементы, работающие при температурах (300-700)°С, так как это соединение обладает высоким коэффициентом термоЭДС и малой теплопроводностью. Благодаря чувствительности к видимому свету соединения AIIBVI применяются в качестве материалов тонкопленочных солнечных элементов с КПД=10%. Самым лучшим материалом для современных приборов ИК-техники является халькогенид типа AIIBVI - CdHgTe (КРТ). Он стабильно работает при температуре жидкого азота (-196°С), тогда как другие материалы требуют более глубокого охлаждения. КРТ - материал стратегического назначения. Обнаружение стартов ракет, наведение средств доставки оружия к цели, преобразование теплового (ночного) излучения в видимое, наблюдение и фотографирование местности из космоса через атмосферные окна ночью и в условиях: облачности - вот задачи, которые решает ИК-техника на базе КРТ. Но технология КРТ сложна из-за высокого давления паров Hg при плавлении, для его гомогенизации твердотельной диффузией необходимы отжиги в течение (30-50) суток, плохо воспроизводятся параметры, материал взрывоопасен. Узкозонные селениды и теллуриды имеют очень высокую подвижность электронов, а значит, большие значения постоянной Холла и магнетосопротивления. Эти материалы с высокой чувствительностью к магнитному полю используются в датчиках Холла - в приборах для измерения напряженности постоянных и переменных магнитных полей, ваттметрах, генераторах электрических колебаний
Дата добавления: 2015-05-26; Просмотров: 1183; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |