Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Карбид кремния




Карбид кремния SiС - это полупроводниковое соединение типа AIV ВIV.

Карбид кремния - полиморфный материал, т.е. может иметь 2 кри­сталлические структуры: гексагональную и кубическую типа сфалерита, Полупроводниковыми свойствами обладает гексагональный SiC, в котором каждый атом Si находится в тетраэдрическом окружении атомов С и наоборот (рисунок 3.15).

Для SiC существует более 100 политипов, отличающихся разме­щением в кристаллической решетке слоев атомов Si и их чередова­нием.

Рисунок 3.15

Разная структура политипов обусловливает разные электричес­кие свойства: ширина запрещенной зоны (2,3-3,33) эВ, подвижность электронов (0,33-1) м2/(В.с). Механические и химические свойства слабо зависят от структуры. Все политипы SiC твердые, по твер­дости уступают только алмазу. Благодаря высокой твердости SiC используется как абразивный для механической обработки материалов.

Примеси в SiC изменяют не только тип проводимости, концент­рацию носителей, но и его цвет. Чистый SiC стехиометрического состава (70% Si и ЗО%С) бесцветный. Принеси У группы (N,P,As, Sb,Bi) и Fе в SiС дают зеленую окраску и электропроводность n-типа, а элементы Ca, Mg - голубую окраску; В, Al,Ga, In -фиолетовую, и электропроводность p-типа. Избыток Si при­водит к n-SiC, а избыток С - к р-SiC.

Диффузию примесей в SiC проводят в закрытом объеме при Т = 1800-2200)°С. Донорные примеси (N, Р, As, Sb, Bi) имеют низ­кий коэффициент диффузии, поэтому для формирования в Si р-n-переходов берут исходный SiC, легированный азотом, n-типа про­водимости и диффузией вводят акцепторную примесь бора. Такие p-n-переходы являются основой светодиодов желтого излучения. Принцип действия светодиодов основан на способности SiC люминесцировать в видимой области с любым цветом излучения, красным, желтым, зе­леным, синим при введении примесей (активаторов люминесценции) соответственно, бериллия, бора, скандия, алюминия.

На базе SiC создают оптроны - ПП приборы, объединяющие ис­точник света (светодиод) и приемник света (фотодиод).

ПП приборы на SiC отличаются тем, что могут работать при бо­лее высоких температурах (таблица 3.1), в химически агрессивных средах, при высоких уровнях радиации.

3.6.6. Полупроводниковые соединения AIII BV

Эти соединения образуются на основе элементов III группы табли­цы Д.И.Менделеева (В, Al, Ga, In) и элементов У группы - N, Р, As, Sb.

Изучение этих соединений ведется с 60-х годов XX века, и к настоящему времени наибольший интерес представляют: GaAs - арсенид галлия, GaP - фосфид галлия, InSb - антимонид индия, InAs - арсе­нид индия, InР - фосфид индия.

Освоение производства любого из соединений AIIIBV является слож­ной технологической задачей, так как этим соединениям присущ ряд недостатков.

1) Низкая растворимость легирующих примесей не более 1.1018 см-3
не обеспечивает достаточного уровня инжекции из эмиттерной области транзистора. Биполярные транзисторы на соединениях AIIIBV не эффективны из-за низкой подвижности дырок.

2) Отсутствие собственных оксидов на поверхности исключает возможность изготовления из соединений AIIIBV МОП-транзисторов. Единственной конструкцией полевого транзистора является транзистор
на барьере Шотки (рисунок 3.16).

Рисунок 3.16

3) Токсичность реагентов AsCl3, AsH3, PH3, используемых
для выращивания монокристаллов AIIIBV и эпитаксии в сочетании с
взрывоопасностью водорода создает напряженную обстановку на производстве, требует повышенных мер безопасности, серьезно усложняет аппаратуру и технологию.

Образование в процессах обработки арсенидов и фосфидов,

вредных для окружающей среды отходов, требует необходимости их тщательного улавливания и обезвреживания. Например, при шлифовке фосфидов может образовываться чрезвычайно ядовитый газ - фосфин, а при растворении арсенидов в присутствии восстановителей - арсин.

5) Все фосфиды и арсениды при нагреве с большей или меньшей скоростью теряют летучие компоненты By - As или Р, т.е. являют­ся разлагающимися по схеме:

АIII BV - АIII (Ж) + 1/2 В2 (газ).

Это создает трудности при проведении отжига, диффузии.

В области применения наиболее универсальным является арсенид галлия GaAs. Это один из основных материалов СВЧ-техники и оптоэлектроники (рисунок 3.17).

Арсенид галлия   СВЧ техника Оптоэлектроника

Рисунок 3.17

Арсенид галлия был первым ПП, на котором в 1962г. был создан

инжекционный лазер, т.е. осуществлена генерация когерентного излучения (одной длины волны) с помощью р-n перехода. Лазерный эффект возникает лишь в случае, если плотность тока через р-n переход превышает некоторое пороговое значение. На GaAs за счет электролюминесценции создаются светодиоды ИК-излучения, ко­торые наиболее эффективны в оптронах и волоконно-оптических ли­ниях связи. Светодиоды видимой области, обеспечивающие в инфор­мационных каналах связь аппаратуры с ее пользователями, изготов­ляются на фосфиде галлия GaP, имеющем ширину запрещенной зоны больше 1,7 эВ.

Широкозонные AIII BV (см. таблицу 3.2) являются материалами для СВЧ-техники, благодаря высокой подвижности электронов. ИМС на GaAs обладают большим быстродействием, чем ИМС на кремнии. Но техно­логия ИМС на GaAs требует совершенствования техники эпитаксии, освоения технологии ионного легирования вместо диффузии, лазер­ного отжига вместо термического, электронно-лучевой литографии вместо фотолитографии и разработки новых методов осаждения защитных покрытий.

Узкозонные AIIIBV (InSb, InAs), обладающие высокой подвижно­стью электронов, служат для изготовления магниторезисторов и преобразователей Холла.

3.6.7. Соединения AIIBVI и другие халькогенидные полупроводники

Халькогениды - это соединения серы, селена, теллура с метал­лами. Наиболее изученными являются ПП халькогениды - сульфиды, селениды, теллуриды цинка, кадмия (AIIBVI) и свинца (AIVBVI).

Свойства халькогенидов еще в большей степени, чем в случае Si, Ge, AIIIBV, зависят от технологии. При повышенных температу­рах компоненты халькогенидов обладают резко отличающимися упругостями пара. Если в соединениях AIIIBV давление паров Рa«Pb (при повышенных температурах улетучивается, испаряется компонент В), то в халькогенидах возможны варианты: 1)Рa≈Pb(СdTe, ZnTe); 2)Pа<Рв (CdS, ZnTe, CdSe); 3)Ра«Рв(PbS, PbSe, PbTe), т.е. при повышенных температурах соединения AIIBVI разлагаются по реакции:

IIBVI → 2АII газ + B2VI газ

Важной особенностью соединений AIIBVI является то, что они мо­гут проявлять электропроводность лишь одного типа независимо от характера легирования. Например, CdS, ZnS, CdSe, ZnSe являются ПП n-типа проводимости, а ZnТе - p-типа. И только CdTe мо­жет быть n- и p-типа проводимости. Таким образом, AIIBVI в технологическом отношении трудные объекты.

Применение халькогенидов связано с ярким проявлением фоторезистивных и люминесцентных свойств. Самым чувствительным фоторе­зистором CdS является е видимой части спектра: при освещении его сопротивление уменьшается в 104 - 106 раз.

В качестве люминофоров чаще всего используется ZnS и твер­дые растворы ZnS + ZnSe или ZnS + CdS. Эти катодолюминофоры используются для кинескопов черно-белых телевизоров, обла­дают высокой яркостью и светоотдачей в видимой области спектра.

В халькогенидах Рb при низких температурах происходят про­цессы излучательной рекомбинации носителей заряда и это исполь­зуется для создания лазеров ИК-диапазона.

На базе PbTe изготавливают термоэлементы, работающие при температурах (300-700)°С, так как это соединение обладает высо­ким коэффициентом термоЭДС и малой теплопроводностью. Благодаря чувствительности к видимому свету соединения AIIBVI применяются в качестве материалов тонкопленочных солнечных элементов с КПД=10%.

Самым лучшим материалом для современных приборов ИК-техники является халькогенид типа AIIBVI - CdHgTe (КРТ). Он стабильно работает при температуре жидкого азота (-196°С), тогда как дру­гие материалы требуют более глубокого охлаждения. КРТ - материал стратегического назначения. Обнаружение стартов ракет, наведение средств доставки оружия к цели, преобразование теплового (ночно­го) излучения в видимое, наблюдение и фотографирование местности из космоса через атмосферные окна ночью и в условиях: облачности - вот задачи, которые решает ИК-техника на базе КРТ. Но технология КРТ сложна из-за высокого давления паров Hg при плавлении, для его гомогенизации твердотельной диффузией необходимы отжиги в течение (30-50) суток, плохо воспроизводятся параметры, мате­риал взрывоопасен.

Узкозонные селениды и теллуриды имеют очень высокую подвижность электронов, а значит, большие значения постоянной Холла и магнетосопротивления. Эти материалы с высокой чувствительностью к магнитному полю используются в датчиках Холла - в приборах для измерения напряженности постоянных и переменных магнитных полей, ваттметрах, генераторах электрических колебаний

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 1183; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.