Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Загальні вказівки. Завдання 2 Планування ДФ та ПФ експерименту




Завдання 2 Планування ДФ та ПФ експерименту

Якщо наперед не відомий аналітичний вираз функції відгуку, то можна розглядати не саму функцію, а її розкладання, наприклад в статечній ряд у вигляді полінома

Y=В0 + B1Х1 + … + BnХn + В12Х1Х2 + … Вnn-1ХnХn-1 + В11Х12 + … + ВnnXn2 +….

Розкладання в статечній ряд функції можливо в тому випадку, якщо сама функція є безперервною і гладкою. На практиці зазвичай обмежуються числом членів статечного ряду і апроксимують функцію поліномом деякої міри.

Зв'язок між кодовим і натуральним виразом чинника задається формулою

, (2.1)

де - натуральне значення чинника;

- значення -го чинника на нульовому рівні;

- інтервал варіювання -го чинника.

Перевірка відтворюваності дослідів. При однаковому числі паралельних дослідів на кожному поєднанні рівнів чинників відтворюваність процесу, перевіряється по критерію Кохрена:

, (2.2)

де дисперсія, що характеризує розсіяння результатів дослідів на -м поєднанні рівнів чинників:

. (2.3)

де - число паралельних дослідів;

- найбільша з дисперсій в строчках плану;

- табличне значення критерію Кохрена при 5%-ном рівні значущості;

- число незалежних оцінок дисперсії;

- число мір свободи кожної оцінки.

Процес вважається відтворним, якщо виконується нерівність (2.2). При цьому дисперсія відтворюваності (помилка досвіду) визначається по формулі

. (2.4)

Якщо нерівність (2.2) не виконується, то необхідно прийняти заходи до уточнення вимірювань в досвіді з максимальною дисперсією.

У разі відтворного процесу розраховують коефіцієнти регресії

. (2.5)

. (2.6)

. (2.7)

Перевірка адекватності лінійної моделі виконується за допомогою критерію Фішера. Адекватність обґрунтована, якщо виконується нерівність

, (2.8)

де - розрахункове значення відгуку в -му досвіді;

, (2.9)

- критерій Фішера при 5%-ном рівні значущості;

- число мір свободи дисперсії адекватності;

- число мір свободи дисперсії відтворюваності.

Оцінка значущості коефіцієнта регресії проводиться за допомогою критерію Стьюдента. Коефіцієнт вважається значущим, якщо виконується нерівність

, (2.10)

де - 5%-ная точки розподілу Стьюдента з мірами свободи.

Якщо в ДФЕ коефіцієнти при взаємодіях не рівні нулю, то знайдені за наслідками дослідів вибіркові коефіцієнти регресії будуть оцінками для сумісних ефектів:

.




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 295; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.