Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы повышения надежности элементов




 

Надежность радиоэлектронной аппаратуры в значительной степени зависит от надежности используемых в ней элементов. Если элементы обладают невысокой надежностью, меры, которые принимаются для обеспечения надежности систем, будут мало эффективны. Поэтому к надежности элементов предъявляют очень высокие требования.

Элементы современных радиоэлектронных приборов представляют собой сложные и весьма совершенные технические устройства. Их характеристики зависят от тонких физических процессов, технология их производства весьма сложна и совершенна. Обеспечение высокой надежности этих элементов требует использования высококачественных исходных материалов, поддержания весьма высокого уровня вакуумной гигиены при изготовлении, прецизионного ведения сложнейших технологических процессов производства.

Рассматривая проблему обеспечения надежности элементов, следует учитывать, что она состоит из двух частей: обеспечение собственной надежности самих элементов и обеспечение надежности работы элементов в аппаратуре.

На элементы РЭА постоянно воздействуют внешние и внутренние эксплуатационные факторы. К первым относятся: температура, влажность, давление и химический состав среды, радиация и другие факторы, влияющие на элементы независимо от того, работают они или нет. Ко вторым факторам относятся напряжения и токи установившихся и переходных режимов работающих элементов и возникающее в связи с этим выделение в элементе тепла, образование электрических и магнитных полей, механические нагрузки.

Из-за воздействия эксплуатационных факторов в материалах элементов протекают различные физико-химические процессы, в результате которых возникают обратимые и необратимые изменения в материалах.

Обратимые изменения обусловлены обменом материала элемента с внешней средой за счет сорбции и десорбции, температурными изменениями свойств материала и другими явлениями.

Необратимые изменения вызываются протеканием в материалах химических реакций, проникновением в них различных веществ из внешней среды, развитием микротрещин в структуре материала и другими процессами.

Накопление изменений в материалах приводит к изменению их свойств, параметров элементов и, в конечном счете, к появлению постепенных и внезапных отказов, которые отличаются друг от друга скоростью накопления изменений.

Таким образом, существует причинно-следственная связь последовательности событий, приводящих к отказам элементов.

На этапах разработки и производства элементов закладывается определенный уровень их надежности, характеризуемый значениями показателей надежности. Определение этих показателей производится статистическими методами на основе результатов испытаний элементов при уровнях внутренних и внешних нагрузок, определяемых техническими условиями. Такие показатели надежности называют производственными. Другой вид показателей определяется реальными эксплуатационными режимами работы элемента. Эти показатели носят название: «рабочие критерии надежности».

Существуют следующие основные резервы повышения производственных показателей надежности элементов:

- ослабление интенсивности протекания в материалах физико-химических процессов, приводящих к изменению параметров элементов;

- увеличение запасов прочности структуры элемента по всем видам нагрузок;

- создание равнопрочной конструкции во всех звеньях структуры;

- применение новых конструктивных решений и новых принципов создания элементов с большими потенциальными возможностями в отношении повышения надежности;

- отбраковка элементов со скрытыми производственными дефектами.

 

Наиболее перспективным способом повышения производственной надежности является разработка и применение интегральных микросхем (ИМС) и функциональных приборов.

Элементы интегральных микросхем, аналогичные обычным радиодеталям и приборам, выполнены и объединены внутри или на поверхности общей подложки, электрически соединены между собой и заключены в общий корпус. В интегральной микроэлектронике сохраняется основной принцип дискретной электроники, основанной на разработке электрической схемы по законам теории цепей.

Помимо высокой надежности собственных элементов в интегральных микросхемах очень низкая интенсивность отказов связей между элементами и, поскольку интенсивность отказов системы lS формируется из двух составляющих – надежности элементов i и надежности их связей j , снижение второй составляющей привозит к значительному эффекту в части повышения надежности систем

Здесь n – количество типов элементов i -го вида; k – количество типов связей между элементами; n i, k j – соответственно количество элементов и связей данного типа.

Для целого ряда полупроводниковых ИМС связь между элементами внутри полупроводника практически абсолютно надежная.

Анализ показывает, что в интегральном исполнении радиоэлектронные узлы имеют надежность на несколько порядков выше надежности аналогичных устройств, выполненных на электровакуумных и полупроводниковых приборах.

Повышение надежности элементов может быть достигнуто также приработкой их под нагрузкой, испытаниями и отбраковкой производственных дефектов. Приработка также позволяет стабилизировать параметры оставшихся элементов. Интенсивность отказов при этом снижается до стабильного уровня, соответствующего периоду нормальной эксплуатации.

Производственная реализация уровня надежности, заложенного при проектировании и конструировании, определяется степенью технологичности элементов, которая должна учитываться при их разработке, и качеством технологического процесса их производства.

Для организации качественного технологического процесса необходимо осуществлять оперативный количественный контроль надежности элементов. Наиболее перспективными методами оперативного контроля становятся методы неразрушающего контроля, позволяющие быстро определять скрытые производственные дефекты изделий и вносить соответствующие коррективы в технологический процесс.

Наиболее действенным способом повышения надежности элементов является использование элемента в облегченных режимах работы (режимная избыточность).а рис.1 представлено изменение интенсивности отказов элемента в зависимости от коэффициента нагрузки Кн.

Из рисунка видно, что при разгруженном режиме работы - характеристика уменьшается. При этом период нормальной работы элемента увеличивается.

Рис. 1


 

При этом коэффициент нагрузки элемента носит комплексный характер и учитывает влияние на надежность, как электрического режима работы элемента, так и влияние различных дестабилизирующих факторов в виде температурных механических и прочих воздействий. Изменения - характеристики для данного вида элемента в зависимости от различных факторов приведены в справочниках по надежности.

Повышение надежности элементов не может быть достигнуто какими-либо отдельными мерами совершенствования методов и средств производства. Для достижения этого необходима комплексная стандартизация, предусматривающая разработку нормативно-технической документации, устанавливающей стабильность качества исходных материалов, методы оценки показателей качества материалов и готовых изделий, единство измерений, требований к испытанию элементов и т.д. Высокий уровень надежности элементов, может быть, достигнут лишь тогда, когда сырье, материалы и полуфабрикаты будут соответствовать требованиям стандартов. Стандарт выполняет основную роль движущей силы повышения надежности элементов, так как в нем отражено все передовое, достигнутое ходом научно-технического прогресса. При его разработке исходят из результатов лучших научных работ, определяющих перспективу развития элементов.

Таким образом, повышение надежности элементов РЭА является комплексной проблемой, которая требует разработки и внедрения, эффективных и связанных между сабой мероприятий в каждом звене замкнутой цепи:

разработка -> производство -> эксплуатация -> разработка.

 




Поделиться с друзьями:


Дата добавления: 2015-05-29; Просмотров: 790; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.