КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Растровая оже-электронная спектроскопия
А б Рис. 3.14. К определению параметров спектральных линий
В дифференциальных спектрах dN/dE (рис. 3.14б) под величиной Em понимают спектральное положение минимума, ширина пика определяется как расстояние между максимумом и минимумом по шкале энергий, интенсивность (амплитуда) ‑ как разность значений в максимуме и в минимуме, под интегральной интенсивностью пика понимают амплитуду, умноженную на ширину. В результате измерений и математической обработки полученных спектров по положениям пиков, не проводя дополнительных измерений, можно качественно определить наличие того или иного элемента на поверхности и его приблизительную концентрацию. В ряде случаев, при регистрации химсдвигов можно определить химическую форму определяемого элемента. Количественный анализ. Для проведения количественного анализа методом ЭОС необходимо установить связь между током Оже-электронов данного элемента и концентрацией этого элемента в поверхностной области. Ток Оже-электронов, возникающих в результате Оже-перехода WXY в элементе α можно записать в виде: , (3.6) где W – возбуждаемый объем, E – энергия Оже-электронов (распределение энергий Оже-электронов Гауссово или Лоренцево), Ep и – энергия и плотность возбуждающего потока первичных электронов, Ew – энергия внутреннего уровня W, σα (E, Ew) – сечение ионизации внутреннего уровня W, Nα(Z) – атомная концентрация элемента α на глубине Z от поверхности, λ – глубина выхода Оже-электронов, exp(-Z/λ) – вероятность выхода Оже-электрона, γα (WXY) – вероятность Оже-перехода WXY. Для простоты предполагается двумерная однородность элементного состава в слоях, параллельных поверхности. Для дальнейшего уточнения можно предположить трехмерную однородность химического состава в области, где значительна вероятность выхода. Кроме того, имеет смысл разделить плотность возбуждающего потока на две компоненты: , где – первичный возбуждающий поток, – возбуждающий поток, вызванный рассеянными первичными электронами. Тогда можно написать: , (3.7) где RB – коэффициент обратного рассеяния, а Т – пропускание анализатора. Чтобы проводить количественный анализ на основе формулы (3.7), необходимо знать с требуемой точностью сечение ионизации, выход Оже-электронов и коэффициент обратного рассеяния. Кроме того, нужно точно измерить абсолютные значения тока Оже-электронов. Анализ усложняется и шероховатостью поверхности, которая обычно уменьшает выход Оже-электронов по сравнению с гладкой поверхностью. Поскольку все эти требования нельзя выполнить в условиях обычного лабораторного Оже-анализа, количественный анализ, основанный на теоретическом определении физических величин, пока что практически невозможен. Тем не менее, существует ряд методов, которые делают возможным количественный анализ методом ЭОС. 1). Метод внешних эталонов. В этом методе Оже-спектры исследуемого образца сравнивают со спектрами эталона, содержащего интересующий элемент с известной концентрацией. Концентрацию элемента α в исследуемом образце можно определить по концентрации этого элемента в эталоне , пользуясь формулой (3.7): (3.8) Важным преимуществом такого метода является то, что не нужно знать сечение ионизации и выход Оже-электронов, т.е. все сводится к относительным измерениям. Если состав исследуемого образца близок к составу эталона, то глубина выхода и коэффициент обратного рассеяния выпадают из формулы (8), и все сводится к измерению отношения токов. Очевидно, что все сказанное справедливо, если измерения с исследуемым и эталонным образцами проводятся в одинаковых условиях. Если образец и эталон различаются по составу, то нужно по возможности более точно учесть влияние матрицы на коэффициент обратного рассеяния и на глубину выхода. Кроме того, если из-за различий в матрице изменится форма Оже-пика, то высота Оже-пика в дифференцированном Оже-спектре не может служить точной относительной мерой Оже-тока. Коэффициент обратного рассеяния можно оценить, сравнив кривые зависимости выхода Оже-электронов от Ep с теоретическими зависимостями сечения ионизации от Ep или с данными, характеризующими выход Оже-электронов в зависимости от Ep для газов, ибо в случае газов коэффициент обратного рассеяния пренебрежимо мал. Коэффициент обратного рассеяния увеличивается с ростом плотности матрицы и энергии первичных электронов. При наличии данных о коэффициенте обратного рассеяния в форме RB (Ep,Ew,D), где D – массовая плотность матрицы, можно обеспечить достаточную точность для количественного анализа. 2). Метод коэффициентов элементной чувствительности. Менее точным, но весьма ценным методом количественного анализа является метод, основанный на введении коэффициентов элементной чувствительности. Полагая, что для каждого элемента можно ввести определенный коэффициент чувствительности, атомную концентрацию элемента Х записывают в виде: , (3.9) где S α, Sx – коэффициенты относительной чувствительности к элементу α и x, соответственно. Очевидно, что, вводя коэффициенты чувствительности, не зависящие от матрицы, мы пренебрегаем изменением обратного рассеяния и глубины выхода в зависимости от материала, и, следовательно, метод, в общем, является полуколичественным. Два важных преимущества такого метода – отсутствие эталонов и нечувствительность к шероховатости поверхности. Последнее объясняется тем, что все Оже-пики одинаковым образом зависят от топографии поверхности. 3). Метод учета коэффициентов выхода. Интенсивность линии интересующего элемента в этом методе относится не к суммарной интенсивности всех линий, наблюдаемых в Оже-спектре, а к интенсивности линии эталона. Для каждого элемента можно ввести определенный коэффициент выхода D (зависящий от энергии первичного пучка и от матрицы). Коэффициентом выхода называется количество эмитированных Оже-электронов в расчете на один первичный электрон. Атомная концентрация элемента Х рассчитывается путем сравнения интенсивности его линии Iх с интенсивностью линии эталона I et, измеренной в тех же условиях: , (3.10) где Dх и Det – коэффициенты выхода Оже-электронов для исследуемого и эталона, соответственно. В качестве эталона в методе ЭОС обычно используется серебро (линия MVV, E m = 354 eV). Значения коэффициентов выхода для каждого элемента для разных значений Ep (энергии первичного пучка) приведены в справочниках.
Методика эксперимента Образец для исследования представляет собой пленку сильно легированного твердого раствора SixGe1-x толщиной 1,3 мкм, выращенную на германиевой подложке ориентации (111) методом газофазной эпитаксии.
Описание экспериментальной установки Сверхвысоковакуумная система Omicron Multirpobe STM предназначена для исследования морфологии и химического состава поверхности твердых тел методами сканирующей туннельной микроскопии (СТМ), атомно-силовой микроскопии (АСМ) и электронной спектроскопии. Система состоит из аналитической камеры объемом ~150 л (рис.3.15а, 3.15б, поз.11), изготовленной из немагнитной нержавеющей стали, специально предназначенной для прецизионной электронной спектроскопии. В рабочем объеме ионно-геттерным (рис.3.15б, поз.24) и титановым сублимационным (рис.3.15б, поз.23) насосами поддерживается давление ~10-10 Торр. Турбо-молекулярный насос (рис.3.15а, 3.15б, поз.26) служит для откачки системы после развакуумирования и при работе ионной пушки (рис.3.15, поз.9), а также для откачки шлюзовой камеры (рис.3.15, поз.21), через которую загружаются образцы (рис.3.15в, поз.19). Предварительный вакуум в магистрали создается роторно-пластинчатым форвакуумным насосом (рис.3.15б, поз.27) через ловушку из активированного алюминия, которая предотвращает попадание паров масла из форвакуумного насоса в турбо-молекулярный насос. Для возбуждения Оже-электронов применяется электронная пушка EKF-300 (рис.3.15, поз.10) с вольфрамовым катодом (ускоряющее напряжение до 5 кВ, ток пучка до 5 mА). Фокусировка пучка осуществляется одной электростатической линзой. Диаметр электронного пучка составляет 0.5 – 1 мм. Для позиционирования электронного зонда на образце применяются отклоняющие пластины, Система включает в себя ионную пушку ISE-10 (рис.3.15, поз.9) для очистки образцов ионным распылением и профилирования состава по глубине (ускоряющее напряжение до 5 кВ, ток пучка до 30 mА, диаметр пучка может варьироваться в пределах 1-25 мм). Отклоняющая система в данной конструкции отсутствует, поэтому позиционирование ионного пучка в необходимой области образца производится с помощью манипулятора (рис.3.15б, 3.15в, поз.17). Особенностью конструкции пушки ISE-10 является то, что газ, используемый для травления, подается из резервуара через клапан-натекатель непосредственно в ионизационную камеру пушки, а не в вакуумный объем. При этом одновременно происходит откачка газа при помощи турбовакуумного насоса, так, что во время травления в вакуумной камере сохраняется динамическое равновесие (режим дифференциальной откачки). Преимуществом такого режима является меньшее загрязнение вакуумного объема, меньшее давление в вакуумной камере, а также большая эффективность ионизации газа. Все это позволяет использовать различные (не только инертные) газы, включая кислород. Для регистрации спектра Оже-электронов служит полусферический анализатор энергий электронов ЕА-125 (рис.3.15, поз.1) с радиусом полусферического конденсатора 125 мм. При помощи коллиматора (рис.3.15, поз.6), состоящего из 4-х электростатических линз, электронный пучок фокусируется на входную щель анализатора (рис.3.15в, поз.3). Кроме того, с помощью фокусирующих линз коллиматора у анализатора можно менять угол сбора анализируемых электронов. Анализатор содержит набор входных (рис.3.15в, поз.3) и выходных (рис.3.15в, поз.4) щелей различного размера, позволяющих менять разрешение и чувствительность прибора. Детектирование осуществляется пятиканальным (5 ВЭУ) блоком регистрации (рис.3.15б, поз.5). Диапазон регистрируемых энергий электронов составляет 0 – 2000 эВ. 1 – полусферический анализатор энергий электронов ЕА-125; 2 – блок обработки импульсов ВЭУ; 3 –входные щели; 4 – выходные щели; 5 –блок ВЭУ; 6 – коллиматор; 7 - входная линза; 8 – промежуточная линза; 9 – ионная пушка ISE-10; 10 – электронная пушка EKF-300; 11 – аналитическая камера; 12 – стойка для блоков управления; 13 – блок управления энергоанализатором ЕАС 2000; 14 – блок питания ВЭУ; 15 – блок управления ионной пушкой ISE-10; 16 – блок управления электронной пушкой EKF-300; 17 – манипулятор; 18 – подложкодержатель; 19 – образец; 20 – шибер загрузочной камеры; 21 – загрузочная камера; 22 – ионизационная лампа; 23 – титановый сублимационный насос; 24 – ионно-геттерный насос; 25 – шибер турбо-молекулярного насоса; 26 – турбо-молекулярный насос; 27 – роторно-пластинчатый форвакуумный насос; 28 – компьютер управления; 29 – блок приема и обработки информации; 30 – оптоволоконная линия передачи сигнала.
Рис. 3.15б. Функциональная схема сверхвысоковакуумной системы Omicron Multirpobe STM
Рис. 3.15в. Схема взаимного расположения элементов Оже-спектрометра в составе сверхвысоковакуумной системы Omicron Multirpobe STM.
ВЭУ работают в импульсном электронносчетном режиме. Каждый электрон, попадающий на вход ВЭУ, порождает отдельный электрический импульс в цепи регистрации. С целью гальванической развязки высоковольтных цепей регистрации и низковольтных цепей компьютерного интерфейса, используются оптоволоконная связь (рис.3.15б, поз.30) между блоком обработки импульсов ВЭУ (рис.3.15а, 3.15б, поз.2) и блоком приема и обработки информации (рис.3.15б, поз.29), связанным с компьютером управления (рис.3.15б, поз.28), стандартным интерфейсом RS-232. В камере имеется магнитный транспортер для перемещения образцов из шлюзовой камеры в аналитическую и манипулятор (держатель образца), который обеспечивает трехмерное позиционирование образца относительно точек фокуса электронной пушки, ионной пушки и входной линзы полусферического энергоанализатора (рис.3.15в, поз.7). В головке манипулятора, в которой помещается стандартный подложкодержатель, имеется электрический нагреватель косвенного нагрева для отжига образцов в вакууме (до 770°С), а также контакты для нагрева образца прямым пропусканием тока. Образцы крепятся на специальный подложкодержатель стандартной формы и размеров (рис.3.16), который в свою очередь загружается в камеру. Крепление может осуществляться с помощью специальной проводящей эпоксидной смолы, совместимой со сверхвысоким вакуумом, а также с помощью зажимов из материала, который совместим с вакуумом: нержавеющая сталь, медь, титан, молибден, тантал, вольфрам. Для точного позиционирования образца относительно электронного и ионного пучков и оптической оси и точки фокуса анализатора может быть применен люминофор, который в виде суспензии порошка ZnS в изопропиловом спирте особой чистоты (его можно совмещать с вакуумом) наносится Рис. 3.16. Крепление образца на стандартном подложкодержателе.
в виде дорожки вокруг образца (рис.3.16). Наблюдая свечение люминофора в точке падения на него электронного пучка через специальное окно в верхней части анализатора, расположенное на оптической оси коллиматора (рис.3.15, поз.6), с помощью ручек отклонения луча x, y совмещают пятно с оптической осью. Наблюдая интенсивность линии Zn в Оже-спектре, совмещают плоскость образца с фокальной плоскостью входной линзы коллиматора, корректируя при этом положение точки падения электронного луча. Интенсивность сигнала измеряется с помощью вольтметра В7 – 40/4, подключенного к аналоговому выходу блока сбора и обработки информации. Затем образец при помощи манипулятора устанавливается так, чтобы электронный пучок был направлен в выбранную точку на его поверхности, при этом нужно учесть разницу высот поверхностей люминофора и образца. Окончательную настройку положения и фокуса электронного луча производят по максимуму сигнала какой-либо линии в Оже-спектре. С помощью люминофора также контролируют положение и однородность ионного пучка.
Оже-электронная спектроскопия дает нам информацию об элементном составе участка поверхности тела, размеры которого в первом приближении определяются размерами самого электронного зонда (пучка первичных электронов). Перемещая электронный зонд по поверхности, можно получить данные о распределении элементов на ней в разных точках. В оже-спектрометрах первого поколения диаметр электронного пучка составлял десятые (в лучшем случае сотые) доли миллиметра. Поэтому и пространственное разрешение было того же порядка. В настоящее время выпускаются так называемые сканирующие оже-спектрометры, в которых два прибора объединены вместе. Основой такого комплекса является сканирующий (растровый) электронный микроскоп (РЭМ), в котором электронный пучок очень малого диаметра (несколько нанометров) передвигается в двух перпендикулярных направлениях, засвечивая определенный участок поверхности (точно так же, как в обычной телевизионной трубке). Величина возникающего при этом тока вторичных электронов зависит от различных свойств поверхности. Таким образом, в каждый момент времени вторичные электроны несут информацию с участка, определяемого размерами электронного пучка. Визуализация картины осуществляется с помощью электронно-лучевой трубки (подобной телевизионной), в которой синхронно с электронным зондом движется свой электронный пучок. Если сигнал, пропорциональный току вторичных электронов, подать на модулирующий электрод электронной пушки трубки, то на экране мы увидим изображение поверхности в так называемом режиме вторичных электронов. Такой прибор позволяет получить картину, отражающую эмиссионные свойства. При этом сказать что-либо об элементном составе оказывается непростой задачей. Если наряду с коллектором, служащим для сбора вторичных электронов, установить энергоанализатор, то получится прибор, на котором можно получать изображение поверхности не только во вторичных электронах, но и в оже-электронах. Для этого энергоанализатор необходимо настроить на энергию интересующих нас оже-электронов, а на экране мы увидим распределение соответствующего элемента на поверхности. Если мы хотим получить информацию о распределении всех примесей, надо поочередно настраиваться на другие энергии оже-электронов. На рис. 3.17 приведено упрощенное схематическое изображение такого комбайна. Существенным отличием сканирующего оже-спектрометра от обычного РЭМа является конструкция вакуумной системы, позволяющая достигать давлений р < 10-8 Па (в обычных РЭМах р ~ 10-3 –10-4 Па). Такой сверхвысокий вакуум необходим по той причине, что глубина выхода оже-электронов составляет (0,5–1) нм и любые загрязнения, в том числе и адсорбированные из остаточной атмосферы аналитической камеры частицы, приводят к сильному искажению результатов. Рис. 3.17. Схематическое изображение растрового оже-спектрометра: 1 – образец, 2 – коллектор для сбора вторичных электронов, 3 – энергоанализатор, 4 – детектор энергоанализатора, 5 – электронно-лучевая трубка, 6 – катод электронной пушки, 7 – модулятор электронной пушки, 8 – отклоняющие пластины электронно-лучевой трубки, служащие для получения растра, 9 – экран электронно-лучевой трубки.
Дата добавления: 2015-05-29; Просмотров: 1230; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |