Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Световые микроскопы




Типы микроскопов

Метод фазового контраста.

Метод исследования в поляризованных лучах.

Метод исследования в поляризованных лучах применяется в проходящем и в отраженном свете для так называемых анизотропных объектов, обладающих двойным лучепреломлением или отражением. Такими объектами являются многие минералы, угли, некоторые животные и растительные ткани и клетки, искусственные и естественные волокна.

При исследовании анизотропных препаратов к обычной схеме микроскопа перед осветительной системой добавляют поляризатор, а после объектива – анализатор, находящиеся в скрещенном либо параллельном положении относительно друг друга. При скрещенных поляризаторе и анализаторе в темном поле зрения микроскопа видны темные, светлые или окрашенные анизотропные элементы объекта. Вид этих элементов зависит от положения объекта относительно плоскости поляризации и от величины двойного лучепреломления. Более точное определение оптических данных объекта делается с помощью различных компенсаторов (неподвижных кристаллических пластинок, подвижных клиньев и пластинок).

 

Метод фазового контраста дает возможность получать контрастные изображения прозрачных и бесцветных объектов. К числу таких объектов относятся, например, неокрашенные биологические препараты, нетравленые шлифы металлов и минералогические объекты. Темные и светлые места в фазово-контрастном изображении соответствуют различным показателям преломления в препарате.

Принцип действия метода основан на том, что незаметные для глаза изменения фазы пучка, прошедшего через объект, можно преобразовать в видимое изменение интенсивности. На пути лучей, не отклоненных из-за дифракции на объекте, располагается так называемая «фазовая пластинка», увеличивающая разность фаз до половины длины волны. Таким образом, лучи могут интерферировать, и прежде не видимый объект проявляется на темном иди светлом фоне.

Наиболее универсальными и поэтому наиболее распространенными являются биологические микроскопы. Современный биологический мик­роскоп имеет несколько сменных объективов и окуляров, а также фотоокуляры и проекционные окуляры, предназначенные для фотографирова­ния изображения или его проецирования на экран. В таких микроскопах предоставляется возможность применять различные методы наблюдения (о них ниже).

Кроме микроскопов для биологических исследований, выпускаются и различные специализированные микроскопы.

Микроскопы сравнения обеспечивают визуальное сопоставление двух препаратов. Изображение каждого занимает половину поля зрения микроскопа, что позволяет проводить сравнительное изучение объектов.

Контактные микроскопы дают возможность проводить исследова­ния микроскопических структур отдельных участков тканей, прижимая объектив к объекту исследования. Например, LOMO производит серию микроскопов МЕТАМТМ для наблюдения, измерения, микрофотографии микроструктур металлов и других непрозрачных экземпляров.

Стереомикроскопы (серии SFTM и MXTM) обеспечивают исследова­ние объекта под разными углами зрения. При этом создается стереоско­пический эффект, и наблюдаемое изображение воспринимается объемно.

Ультрафиолетовый и инфракрасный микроскопы предназна­чены для исследования объектов в ультрафиолетовом или инфракрасном участке светового спектра. Они снабжены флуоресцентным экраном, на котором формируется изображение исследуемого препарата, фотокамерой с чувствительным к этим излучениям фотоматериалом или электронно-оптическим преобразователем.

Поляризационный микроскоп (серия POLAMTM) позволяет выявлять неоднородности (анизотропию) структуры при изучении строения тканей и образований в организме и поляризованном свете. Поляризационный микроскоп широко используется в медико-биологических исследованиях.

Интерференционный микроскоп дает возможность исследовать объекты с низкими показателями преломления света и чрезвычайно малой толщины. В отличие от фазово-контрастного устройства, в интерференционном микроскопе луч света, входящий в микроскоп, раздваивается. Часть проходит через исследуемый объект, а другая - мимо. В окулярной части оба луча соединяются и интерферируют, что позволяет увидеть исследуемую структуру.

Принцип действия люминесцентного микроскопа ( серия LUMAMТМ) основан на использовании люминесценции биологических объектов, возникающей под действием ультрафиолетового излучения. Наблюдая или фотографируя препараты в отраженном свете, можно судить о структуре исследуемого образца, что используется в микробиологии и в иммунологических исследованиях. Прямое окрашивание люминесцентными красителями позволяет выявлять такие структуры клеток, которые трудно рассмотреть в световом микроскопе.

Операционный микроскоп (серии MIKOTM, MXTM) используется для проведения микрохирургических операций в офтальмологии, нейрохирургии и других областях микрохирургии. Микроскоп имеет волоконно-оптическую систему освещения операционного поля, демонстрационное визуальное устройство, фото приставку; возможно подключение к нему киноаппаратуры для съемки операции и телевизионного наблюдения.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 521; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.