КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Эквипотенциальные поверхности
Связь между напряженностью и потенциалом. Для потенциального поля, между потенциальной (консервативной) силой и потенциальной энергией существует связь
где Поскольку
Знак минус показывает, что вектор Е направлен в сторону убывания потенциала.
Для графического изображения распределения потенциала используются эквипотенциальные поверхности - поверхности во всех точках которых потенциал имеет одно и то же значение.
Эквипотенциальные поверхности обычно проводят так, чтобы разности потенциалов между двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности расположены гуще, напряженность поля больше. На рисунке пунктиром изображены силовые линии, сплошными линиями - сечения эквипотенциальных поверхностей для: положительного точечного заряда (а), диполя (б), двух одноименных зарядов (в), заряженного металлического проводника сложной конфигурации (г). Для точечного заряда потенциал Можно показать, что во всех случаях вектор Е перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала.
Примеры расчета наиболее важных симметричных электростатических полей в вакууме. 1. Электростатическое поле электрического диполя в вакууме. Электрическим диполем (или двойным электрическим полюсом) называется система двух равных по модулю разноименных точечных зарядов (+q,-q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля (l<< r). Плечо диполя l - вектор, направленный по оси диполя от отрицательного заряда к положительному и равный расстоянию между ними.
1) Напряженность поля диполя на продолжении оси диполя в точке А
2)Напряженность поля в точке В на перпендикуляре, восстановленном к оси диполя из его середины при
3)Во внешнем электрическом поле на концы диполя действует пара сил, которая стремится повернуть диполь таким образом, чтобы электрический момент ре диполя развернулся вдоль направления поля Ё (рис.(а)).
2. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость заряжена с постоянной поверхностной плотностью В качестве Гауссовой поверхности примем поверхность цилиндра, образующие которого перпендикулярны заряженной плоскости, а основания параллельны заряженной плоскости и лежат по разные стороны от нее на одинаковых расстояниях. Так как образующие цилиндра параллельны линиям напряженности, то поток вектора напряженности через боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания 2ES. Заряд, заключенный внутри цилиндра, равен
Е не зависит от длины цилиндра, т.е. напряженность поля на любых расстояниях одинакова по модулю. Такое поле называется однородным. Разность потенциалов между точками, лежащими на расстояниях х1 и х2 от плоскости, равна 3.Поле двух бесконечных параллельных разноименно заряженных плоскостей с равными по абсолютному значению поверхностными плотностями зарядов σ>0 и - σ.
Из предыдущего примера следует, что векторы напряженности Е1 и E2 первой и второй плоскостей равны по модулю и всюду направлены перпендикулярно плоскостям. Поэтому в пространстве вне плоскостей они компенсируют друг друга, а в пространстве между плоскостями суммарная напряженность
Поле между плоскостями однородное. Разность потенциалов между плоскостями.
4.Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом q заряжена равномерно с поверхностной плотностью Поскольку система зарядов и, следовательно, само поле центрально-симметрично относительно центра сферы, то линии напряженности направлены радиально.
При r<=R замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферы Е = 0. Разность потенциалов между двумя точками, лежащими на расстояниях r1 и r2 от центра сферы (r1 >R,r2 >R), равна
Вне заряженной сферы поле такое же, как поле точечного заряда q, находящегося в центре сферы. Внутри заряженной сферы поля нет, поэтому потенциал всюду одинаков и такой же, как на поверхности
5. Поле объемно заряженного шара.
Центр шара является центром симметрии поля. 1) Для поля вне шара (г > R) получаем тот же результат, что и в случае сферической поверхности
2)При r= R
3)Внутри шара сфера радиусом r<R охватывает заряд По теореме Гаусса Отсюда, для точек, лежащих внутри шара r1<R, r2<R), с учетом
6. Поле равномерно заряженного бесконечного цилиндра (нити).
Линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве Гауссовой поверхности выберем цилиндр радиуса г и высотой I коаксиальный с заряженной нитью. Торцы этого цилиндра параллельны линиям напряженности, поэтому поток через них равен нулю.
По теореме Гаусса (при r>R)
Если г <R, то замкнутая поверхность зарядов внутри не содержит, поэтому Е=0.
Дата добавления: 2015-06-04; Просмотров: 6802; Нарушение авторских прав?; Мы поможем в написании вашей работы! |