Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лазерное стрелковое оружие (потенциальное)




Лазерное наведение

Дальномеры

Лазерный дальномер — устройство, состоящее из импульсного лазера и детектора излучения. Измерив время, за которое луч преодолевает путь до отражателя и обратно и зная значение скорости света, можно рассчитать расстояние между лазером и отражающим объектом. Лазерный дальномер — простейший вариант лидара. Значение расстояния до цели может использоваться для наведения оружия, например танковой пушки.

Другое военное применение лазеров — оружейные системы наведения. Такие системы представляют собой лазер небольшой мощности, «подсвечивающий» цель для боеприпасов с лазерным наведением — «умных» бомб или ракет, запускаемых с самолёта. Ракета автоматически меняет свой полет, ориентируясь на отраженное пятно лазерного луча на цели, обеспечивая таким образом высокую точность попадания. Лазерный излучатель может находиться как на самом самолёте, так и на земле. В устройствах лазерного наведения обычно используются инфракрасные лазеры, так как их работу проще скрыть от противника.

Первым военным применением лазеров, которое всем приходит на ум, обычно становится использование их в конструкции лазерного стрелкового оружия, способного уничтожать пехоту, танки и даже самолёты. На практике такие идеи сразу наталкиваются на серьёзное препятствие — при современном уровне технологий лазер, способный нанести повреждение человеку (с учётом источника питания) окажется слишком тяжёлым для переноски в одиночку, а устройство, обладающее достаточной мощностью для выведения из строя танка, будет крайне громоздким и чувствительным к вибрациям устройством, что сделает невозможным его полевое применение. В первую очередь это объясняется чрезвычайно низким КПД лазера: для получения достаточного (для повреждения цели) количества излучаемой энергии, необходимо затратить в десятки (иногда сотни) раз больше энергии для накачки рабочего тела лазера. В частности, для нанесения повреждения, аналогичного удару пули тридцатого калибра (в энергетическом соотношении) требуется лазерный импульс мощностью около 5 кДж; 1,6 кДж будет эквивалентен 9-мм пуле соответственно. Лучевой импульс продолжительностью в секунду, таким образом, должен иметь мощность 1600 Вт. При этом следует учесть указанный выше фактор низкого КПД лазера, соответственно, источник питания должен выдать мощность минимум в десять раз большую (в лучшем случае). Именно масса источников энергии для накачки, в значительной степени, определит тяжесть подобного оружия. На настоящее время портативных источников энергии с такой плотностью энергии не существует. Следует также отметить, что неизлучённый в лазерном импульсе остаток энергии выделится в виде тепла в конструкции оружия, что потребует весьма эффективной и тяжёлой системы охлаждения для сброса тепла. А потребное время остывания, в свою очередь, чрезвычайно уменьшит скорострельность оружия. Оговоримся, что проблема теплоотвода отчасти решена в лазерах с химической накачкой (в частности, кислородно-йодном и дейтерий-фторном лазерах большой мощности, выдающих мегаватты в секундном импульсе), где отработанные химические компоненты выбрасываются из системы после имульса, унося тепло. В то же время, излучателю требуется большой запас этих, зачастую агрессивных, реагентов и соответствующие ёмкости для хранения.

Остаётся только возможность использования лазера для ослепления противника, потому что для этой цели нужны лазеры совсем небольшой мощности, которые можно сделать портативными. В настоящее время использование таких устройств запрещено международными правилами ведения войн. Тем не менее, лазеры малой мощности, в том числе лазерные указки, ограниченно используются для ослепления снайперов противника и выявления скрытых огневых точек.

Промышленность

 

Поверхность исследуемой мишени мгновенно испаряется и вспыхивает при облучении мощным длительным импульсом углекислотного лазера, излучая десятки киловатт инфракрасного излучения. Обратите внимание, что оператор стоит за листами плексигласа, непрозрачного в инфракрасном свете

Лазерная закалка (термоупрочнение) — применяется для повышения срока службы различных изделий, которые в процессе работы подвергаются износу. Сущность процесса лазерной закалки заключается в том, что локальный участок поверхности изделия нагревают с помощью излучения до сверхкритических температур. Нагрев металла осуществляется передачей энергии лазерного излучения вглубь материала, используя его теплопроводность. После прекращения действия излучения этот участок охлаждается за счёт отвода теплоты во внутренние слои металла. Высокая скорость охлаждения приводит к образованию в сплавах закалочных структур, характерных только лазерной обработки.

Лазерный отжиг — в отличие от лазерной закалки, преследует цель получения более равновесной структуры (по сравнению с исходным состоянием), обладающей большей пластичностью и меньшей твердостью. Указанный метод широко используется в микроэлектронике для отжига дефектов в полупроводниках. Лазерным лучом можно отжигать мелкие металлические детали.

Лазерный отпуск — применяется при необходимости локального увеличения пластичности или ударной вязкости, например, в местах соединения различных деталей. Сталь после лазерного отпуска имеет большую прочность, твердость, ударную вязкость, чем после традиционной технологии отпуска.

Лазерная очистка, в том числе лазерная дезактивация — используется для удаления разного рода загрязнений с поверхности предмета. Основные направления лазерной очистки: очистка произведений искусства и памятников; очистка металлов в рамках технологических процессов производства; очистка поверхности от радиоактивного загрязнения (лазерная дезактивация); микроочистка в различных отраслях электроники[5].




Поделиться с друзьями:


Дата добавления: 2015-06-26; Просмотров: 732; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.