Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Элементы IVA-группы




Элементы углерод С, кремний Si, германий Ge, олово Sn и сви­нец Рb составляют IVA-группу Периодической системы Д.И. Мен­делеева. Общая электронная формула валентного уровня атомов этих элементов – n s 2n p 2, преобладающие степени окисления эле­ментов в соединениях +2 и +4. По электроотрицательности эле­менты С и Si относят к неметаллам, a Ge, Sn и Рb – к амфотерным элементам, металлические свойства которых возрастают по мере увеличения порядкового номера. Поэтому в соединениях олова(IV) и свинца(IV) химические связи ковалентны, для свинца(II) и в меньшей степени для олова(II) известны ионные кристаллы. В ряду элементов от С к Рb устойчивость степени окисления +4 уменьшается, а степени окисления +2 –растет. Соединения свинца(IV) – сильные окислители, соединения ос­тальных элементов в степени окисления +2 – сильные восста­новители.

Простые вещества углерод, кремний и германий химически до­вольно инертны и не реагируют с водой и кислотами-неокислителями. Олово и свинец также не реагируют с водой, но под действи­ем кислот-неокислителей переходят в раствор в виде аквакатионов олова(II) и свинца(II). Щелочами углерод в раствор не переводит­ся, кремний переводится с трудом, а германий реагирует со щелочами только в присутствии окислителей. Олово и свинец реагируют с водой в щелочной среде, переходя в гидроксокомплексы олова(II) и свинца(II). Реакционная способность простых веществ IVA-груп-пы усиливается при повышении температуры. Так, при нагревании все они реагируют с металлами и неметаллами, а также с кислота­ми-окислителями (HNO3, H2SO4(конц.) и др.). В частности, концентрированная азотная кислота при нагревании окисляет углерод до СО2; кремний химически ра­створяется в смеси HNO3 и HF, превраща­ясь в гексафторосиликат водорода H2[SiF6]. Разбавленная азотная кислота переводит олово в нитрат олова(II), а концентрированная – в гидратированный оксид олова(IV) SnO2 · n Н2О, называемый β -оловянной кислотой. Свинец под действи­ем горячей азотной кислоты образует нитрат свинца(II), в то время как холодная азотная кислота пассивирует поверхность этого ме­талла (образуется оксидная пленка).

Углерод в виде кокса применяют в металлургии как сильный восстановитель, образующий на воздухе СО и СО2. Это позволяет получить свободные Sn и Рb из их оксидов – природного SnO2 и РbО, получаемого обжигом руд, содержащих сульфид свинца. Крем­ний можно получить магнийтермическим методом из SiO2 (при избытке магния образуется также силицид Mg2Si).

Химия углерода – это главным образом химия органических соединений. Из неорганических производных углерода характер­ны карбиды: солеобразные (такие, как СаС2 или Al4C3), ковалентные (SiC) и металлоподобные (например, Fe3С и WC). Многие со­леобразные карбиды полностью гидролизуются с выделением уг­леводородов (метана, ацетилена и др.).

Углерод образует два оксида: СО и СО2. Монооксид углерода используется в пирометаллургии как сильный восстановитель (пе­реводит оксиды металлов в металлы). Для СО характерны также реакции присоединения с образованием карбонильных комплексов, например [Fe(CO)5]. Монооксид углерода – несолеобразующий оксид; он ядовит («угарный газ»). Диоксид углерода – кислотный оксид, в водном растворе существует в виде моногидрата СО2 · Н2О и слабой двухосновной угольной кислоты Н2СО3. Растворимые соли угольной кислоты – карбонаты и гидрокарбонаты – вслед­ствие гидролиза имеют рН > 7.

Кремний образует несколько водородных соединений (силанов), которые отличаются высокой летучестью и реакционной способно­стью (самовоспламеняются на воздухе). Для получения силанов используют взаимодействие силицидов (напри­мер, силицида магния Mg2Si) с водой или кислотами.

Кремний в степени окисления +4 входит в состав SiO2 и весь­ма многочисленных и часто очень сложных по строению и составу силикатных ионов (SiO44–; Si2O76–; Si3O96–; Si4O116–; Si4O128– и др.), элементарным фрагментом которых является тетраэдрическая группа [SiO4]. Диоксид кремния – кислотный оксид, он реагирует со щелочами при сплавлении (образуя полиметаси-ликаты) и в растворе (с образованием ортосиликат-ионов). Из ра­створов силикатов щелочных металлов при действии кислот или диоксида углерода выделяется осадок гидрата диоксида кремния SiO2 · n Н2О, в равновесии с которым в растворе в небольшой кон­центрации всегда находится слабая орто-кремниевая кислота H4SiO4. Водные растворы силикатов щелочных металлов вслед­ствие гидролиза имеют рН > 7.

Олово и свинец в степени окисления +2 образуют оксиды SnO и РbО. Оксид олова(II) термически неустойчив и разлагается на SnO2 и Sn. Оксид свинца(II), наоборот, очень устойчив. Он образуется при сгорании свинца на воздухе и встречается в природе. Гидроксиды олова(II) и свинца(II) амфотерны.

Аквакатион олова(II) проявляет сильные кислотные свойства и поэтому устойчив только при рН < 1 в среде хлорной или азотной кислот, анионы которых не обладают заметной склонностью вхо­дить в состав комплексов олова(II) в качестве лигандов. При раз­бавлении таких растворов выпадают осадки основных солей раз­личного состава. Галогениды олова(II) – ковалентные соединения, поэтому при растворении в воде, например, SnCl2 протекает внача­ле гидратация с образованием [Sn(H2O)Cl2], а затем гидролиз до выпадения осадка вещества условного состава SnCl(OH). При наличии избытка хлороводородной кислоты, SnCl2 нахо­дится в растворе в виде комплекса [SnCl3]. Большинство солей свинца(II) (например, иодид, хлорид, сульфат, хромат, карбонат, сульфид) малорастворимы в воде.

Оксиды олова(IV) и свинца(IV) амфотерны с преобладанием кислотных свойств. Им отвечают полигидраты ЭО2 · n Н2О, пере­ходящие в раствор в виде гидроксокомплексов под действием из­бытка щелочей. Оксид олова(IV) образуется при сгорании олова на воздухе, а оксид свинца(IV) можно получить только при дей­ствии на соединения свинца(II) сильных окислителей (например, гипохлорита кальция).

Ковалентный хлорид олова(IV) полностью гидролизуется водой с выделением SnO2, а хлорид свинца(IV) под действием воды рас­падается, выделяя хлор и восстанавливаясь до хлорида свинца(II).

Соединения олова(II) проявляют восстановительные свойства, особенно сильные в щелочной среде, а соединения свинца(IV) – окислительные свойства, особенно сильные в кислой среде. Рас­пространенным соединением свинца является его двойной оксид (Рb2IIРbIV4. Это соединение под действием азотной кислоты рас­падается, причем свинец(II) переходит в раствор в виде катиона, а оксид свинца(IV) выпадает в осадок. Находящийся в двойном ок­сиде свинец(IV) обусловливает сильные окислительные свойства этого соединения.

Сульфиды германия(IV) и олова(IV) в силу амфотерности этих элементов при добавлении избытка сульфида натрия образуют ра­створимые тиосоли, например, Na2GeS3 или Na2SnS3. Такая же тиосоль олова(IV) может быть получена из сульфида олова(II) SnS при его окислении полисульфидом нат-рия. Тиосоли разрушаются под действием сильных кислот с выделением газообразного H2S и осадка GeS2 или SnS2. Сульфид свинца(II) не реагирует с полисуль­фидами, а сульфид свинца(IV) неизвестен.




Поделиться с друзьями:


Дата добавления: 2015-06-26; Просмотров: 1765; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.