Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Время: 2часа




Тема 1(7). Общие принципы управления функциями организма

Методические разработки практических занятий по нормальной физиологии для преподавателей

Раздел: «Физиология центральной нервной системы»

Утверждено на заседании кафедры

Составитель- Сидорова О.Н.

Владивосток 2008


 

Мотивационно-воспитательная характеристика темы: Нервная система является управляющим звеном организма человека. Знание физиологии ЦНС необходимо для понимания организма как сложной системы, состоящей из связанных между собой систем органов и тканей. ЦНС осуществляет эту связь. Поэтому изучение ЦНС очень важно для формирования логического мышления у будущего врача, так как помогает понять координацию деятельности всех органов и систем, которые обеспечивают приспособление организма к изменениям окружающей среды и формирование целенаправленного поведения.

Учебная цель Усвоить современные представления о системной организации функций организма и принципах их управления.

 

 

Содержание занятия

Этапы занятия Цель данного этапа Время
1. Вводный контроль Проверка исходного уровня знаний с помощью тестового контроля 10 мин.
2. Опрос-беседа Разбор темы по предложенным вопросам с коррекцией исходного уровня 25 мин.
3. Самостоятельная работа студентов с консультациями преподавателя Закрепление теоретических знаний при выполнении практических заданий, анализ полученных результатов, формулировка выводов, оформление протоколов практических работ 45 мин.
4 Завершающий этап Оценка знаний и умений при решении ситуационных задач и проверке протоколов 10 мин.

 

Вопросы для самоподготовки:

1.Системная организация функций организма. Функциональные системы. Управляющее звено.

2.Способы управления в живых системах.

3.Элементы управляющей системы, обеспечивающие переработку информации. Прямая и обратная связь.

4.Принципы управления функциями организма: по возмущению, по рассогласованию, по прогнозированию.

5. Реактивность организма и её проявление. Правило исходного состояния.

6 Значение ЦНС в процессах управления и связей в живом организме.

7.Нейронная теория. Механизм связи между нейронами: центральные синапсы, медиаторы.

8.Рефлекторный принцип деятельности нервной системы.

Домашнее задание:

1.Зарисовать принципиальную схему функциональных систем организма.

 

Самостоятельная работа на занятии:

Задание Объект Программа действия Ориентировочные основы действия
1. Сухожильные рефлексы человека     человек 1 1Получить коленный рефлекс. Нарисовать схему рефлекторной дуги, указать уровень замыкания в ЦНС. 2 Получить ахиллов рефлекс. Нарисовать схему рефлекторной дуги и указать уровень её замыкания в ЦНС. 3 Получить локтевой рефлекс. Нарисовать рефлекторную дугу рефлекса и указать уровень её замыкания в ЦНС. Рефлекторная дуга коленного рефлекса замыкается на уровне 3 - 4 поясничного сегмента спинного мозга.   Рефлекторная дуга ахиллова рефлекса замыкается на уровне 1 - 2 крестцового сегмента спинного мозга.   Рефлекторная дуга локтевого рефлекса замыкается на уровне 4 - 6 крестцового сегмента спинного мозга.  

 

2. Составить таблицу соматических спинномозговых рефлексов человека по следующей схеме:

 

Название рефлекса Применяемые раздражители Характер рефлекторной реакции Локализация нейронов, участвующие в рефлексе.

 

Вопросы для самоконтроля:

1. Что является системообразующим фактором функциональной системы организма?

2. Перечислите элементы функциональной системы, обеспечивающие движение и переработку информации.

3. Что обеспечивает положительная и отрицательная обратная связь в функциональных системах организма?

4. Что является управляющим звеном в функциональных системах организма?

5 По какому принципу осуществляется управление системой при изменении параметров окружающей среды?

6.Какой принцип управления включается при изменении параметров гомеостаза?

7.Какой принцип управления осуществляют условные рефлексы?

8.От чего зависит результат воздействия на возбудимую систему?

9.Какими свойствами обладают центральные синапсы?

10. С помощью каких медиаторов осуществляется передача возбуждения в ЦНС?

 

Тестовый контроль:

1. Какой канал связи обеспечивает получение информации об изменениях гомеостаза? 1) канал прямой связи; 2) канал обратной связи.

2. Какие структуры в большей степени влияют на скорость проведения возбуждения в рефлекторной дуге? 1) нервные клетки; 2) нервные волокна; 3) клетки глии; 4) синапсы.

3. Чем характеризуется ВПСП? 1) местное возбуждение; 2) распространяющееся возбуждение; 3) подчиняется закону «всё или ничего»; 4) зависит от количества медиатора.

4. Какая информация передается по каналам прямой связи? 1) от ЦНС к исполнительным органам; 2) от результатов действия в управляющее звено; 3) от рецепторов к ЦНС.

5. Как влияет на результат отрицательная обратная связь? 1) снижает влияние управляющего звена на исполнительные органы; 2) усиливает влияние управляющего звена на исполнительные органы; 3) уводит системы от исходного состоянии; 4) приводит систему к исходному состоянию.

6. Дайте характеристику синапсам центральной нервной системы: 1) электрические синапсы; 2) двустороннее проведение возбуждения; 3) синаптическая задержка возбуждения; 4) одностороннее проведение возбуждения; 5) наличие медиатора в пресинапсе; 6) наличие хемовозбудимых ионных каналов в постсинапсе; 7) формирование ВПСП; 8) формирование ТПСП.

7. Возбуждающий постсинаптический потенциал развивается в результате открытия на постсинаптической мембране каналов для ионов: 1) калия; 2) натрия; 3) хлора.

8 Какая информация передается по каналам обратной связи? 1) от рецепторов к ЦНС; 2) от ЦНС к исполнительным органам; 3) от исполнительных органов к ЦНС.

9. Механизм отрицательной обратной связи в системе нейрогуморальной регуляции, осуществляемой гипофизом, заключается в: 1) стимулирующем действии тропного гормона гипофиза на периферическую железу; 2) тормозящем действии тропного гормона гипофиза на периферическую железу; 3) стимулирующем действии гормона периферической железы на выработку тропного гормона гипофиза; 4) тормозящем действии гормона периферической железы на выработку тропного гормона гипофизом.

10. Как изменяется время рефлекса при повышении возбудимости нервных центров? 1) укорачивается; 2) удлиняется; 3) не изменяется.

Ответы: 1-2; 2 – 4; 3-1,4; 4- 1; 5-1,4; 6-3,4,5,6,7,8; 7-2; 8-3; 9-4; 10-1.

Ситуационные задачи:

1. В эксперименте на животном вызывают два различных рефлекса. После этого животному вводят вещество, которое замедляет процесс освобождения медиатора. Время обоих рефлексов удлиняется, причем одного рефлекса значительно больше. чем другого. В чем причина этого различия?

2. Постсинаптическую мембрану химического синапса раздражают деполяризующим током. Возникнет ли возбуждение на постсинаптической мембране?

3. При ритмических раздражениях афферентного нерва ионы кальция, входящие в пресинапс при каждом возбуждении, не успевают выходить из него во время слишком коротких пауз между импульсами. К чему это приведет?

Ответы:

1. При замедлении освобождения медиатора ВПСП достигает порогового уровня за более длительное время, что увеличивает время синаптической задержки. Чем больше синапсов в рефлекторной дуге, тем длительнее время рефлекса. В данном случае рефлексы включали разное количество синапсов, что сказалось на разном времени рефлекса.

2. Возбуждения не будет, т.к. в химическом синапсе мембрана чувствительна к химическому веществу, а не к электрическом току. Возможна только пассивная деполяризация мембраны.

3. Ионы кальция способствуют освобождению медиатора из синаптических пузырьков. При накоплении ионов в пресинапсе будет выделяться повышенное количество медиатора

 

Литература:

А) Основная:

1. Физиология человека. Учебник. /Под ред. В.М.Покровского, Г.Ф.Коротько.- М.: Медицина, 2003, с.97-102

  1. Физиология человека /Под ред. В.М. Покровского, Г.Ф.Коротько. -М., «Медицина», 1998, т.1, с. 98 – 115.

3. Физиология человека. / Под ред. Н.А. Агаджаняна, В.И.Циркина.- СПб: СОТИС, 1998, 2000, 2002, с.33-34.

4. Физиология человека..Учебник. /Под ред. В.М.Смирнова. М.:Медицина, 2002, с.67-81

5. Руководство к практическим занятиям по нормальной физиологии /Под ред.С.М.Будылиной, В.М.Смирнова- М: Издательский центр «Академия», 2005, с.39-46

Б) Дополнительная:

1 Основы физиологии человека. /Под ред. Б.И.Ткаченко.- СПб,1994, т.1, с.86-94.

.2 Физиология человека. /Под ред. Г.И.Косицкого.- М.: Медицина, 1985,.

3 Физиология человека. /Под ред. Р.Шмидта, Г.Тевса,- М.: Мир, 1996, т.1, 4.Руководство к практическим занятиям по физиологии / Под ред. К.В.Судакова- М, 2002, с.85-104.

1. Основы физиологии человека / Под ред. Н.А.Агаджаняна- М: изд-во РУДН, 2001,

2. Орлов Р.С., Ноздрачев А.Д. Нормальная физиология. Учебник- ГЭОТАР-Медиа,2005,

3. Физиология. Основы и функциональные системы: курс лекций /Под ред. К.В.Судакова – М., Медицина, 2000

4. Избранные вопросы клинической психологии / Под ред. Ю.В.Каминского. Т.1.: Нормальная анатомия, физиология и патология нервной системы.- Владивосток, Медицина ДВ,2006, с.211-214

 

Краткое теоретическое содержание темы:

 

По современным представлениям организм человека- это сложная биокибернетическая система, в которой выделяют управляющее устройство и исполнительное звено, их взаимодействие обеспечивает достижение необходимого оптимального состояния в данный момент. Системную организацию имеют как организм в целом, так и его составляющие. Например, клетка-это тоже система, состоящая из управляющего устройства (ядра), исполнительных звеньев (органелл), полезным результатом их взаимодействия может явиться синтез определенного белка. В физиологии существуют понятия физиологической системы (совокупность органов и тканей, связанных общей функцией) и функциональной системы - это динамичные саморегулируемые образования, все компоненты которого взаимодействуют для достижения необходимого полезного результата. Примером физиологических систем являются системы кровообращения, дыхания, пищеварения и т.д. Функциональные системы создаются для обеспечения полезного результата путем одновременной согласованной деятельности многих физиологических систем. Следовательно, функциональные системы- это структурный элемент функционирования целостного организма. В основе системной организации лежит ряд принципов:

22. целостность- функционирование системы не сводится к сумме свойств составляющих её элементов, создание системы преследует собственные цели;

23. структурность- система может функционировать только при сохранении связей между её компонентами. Связующую роль в функциональных системах организма играют нервные проводники и кровеносные сосуды;

24. взаимодействие с окружающей средой, которое может быть пассивным (полное подчинение её влияниям) и активным (в результате достигаются собственные цели);

25. динамичность или подвижность системы. Каждая система возникает на определенном этапе развития организма для получения конкретного результата, при его достижении система может быть ликвидирована или заменена на другую. Функциональные системы организма развиваются не одновременно в силу гетерохронного морфофункционального созревания составляющих её компонентов, что получило название системогенеза;

26. иерархичность. Каждая система включает в себя более простые системные организации и одновременно является лишь элементом в системе более высокого уровня. В организме человека можно выделить несколько уровней системной организации: клеточный, органный, внутрисистемный и межсистемный. В то же время человек является элементом в системе сообщества.

Учение о функциональных системах разработал ученик И.П.Павлова академик П.К.Анохин. Принципиальная схема функциональной системы (ФС) организма по П.К.Анохину представлена на рис.1. Она включает несколько компонентов. Системообразующим фактором любой ФС является тот результат, ради которого и создается система, то есть полезно-приспособительный результат (ППР). Можно выделить несколько групп ППР:

это может быть любой показатель внутренней среды организма, обеспечивающий нормальный метаболизм (например, кислотно-щелочное равновесие, температура, газовая константа и т.д.). Таким образом, ФС создается для поддержания относительного постоянства внутренней среды организма или гомеостаза, что является необходимым условием нормальной жизни.

Результатом может быть удовлетворение биологической потребности (например, продолжение рода), который достигается поведенческой деятельностью.

Результаты социальной деятельности человека.

В любой системе имеется вход в систему (параметры внешней среды) и выход из системы (параметры полученного результата). Для получения необходимого результата в системе взаимодействуют управляющее звено (нервная и эндокринная системы) и исполнительное звено (различные органы и физиологические системы). Управление-это воздействие на орган или систему, направленное на достижение полезного результата. Выделяют несколько способов управления:

27. инициация, при котором происходит запуск функции. Например, ЦНС инициирует двигательные функции;

28. регуляция или коррекция- это воздействие на орган, работающем в автономном режиме, т.е обладающем автоматией (например, сердце). Результатом такого воздействия может быть усиление или торможение деятельности.данного органа или системы;

29. координация -это обеспечение согласованной деятельности нескольких органов или систем одновременно (что и происходит в функциональных системах организма).

Управление невозможно без получения и преобразования информации. В функциональных системах выделяют несколько элементов, обеспечивающих движение и переработку информации:

30. датчики, воспринимающие информацию на входе в систему (рецепторы, чувствительные к изменениям внешней среды);

31. управляющее устройство (ЦНС), где происходит переработка информации;

32. образования, воспринимающие параметры полученного результата (рецепторы исполнительных органов или внутренней среды);

33. каналы, обеспечивающие движение информации от управляющего звена к исполнительному (или от входа к выходу) – это каналы прямой связи;

34. каналы, по которым передается информация от исполнительного звена в управляющее устройство (или от выхода к входу) – это каналы обратной связи. Благодаря обратной связи в управляющее звено передается информация о полученных результатах, что делает систему саморегулируемой. Существуют положительная обратная связь, увеличивающая влияние управляющего звена на исполнительное и уводящая систему от исходного состояния, и отрицательная обратная связь, которая уменьшает влияние входного воздействия на величину выходного сигнала и возвращает систему в исходное состояние.

В основе управления живой системой лежат 3 основных принципа:

35. По возмущению. Данный принцип обеспечивает саморегуляцию на входе в систему при изменениях внешней среды (возмущающее действие внешней среды) и предотвращает изменения во внутренней среде, сохраняя тем самым гомеостаз. Например: понижение температуры окружающей среды улавливается холодовыми экстерорецепторами, по проводящим путям информация поступает в центр терморегуляции гипоталамуса, который посылает команды к исполнительным системам, обеспечивающим уменьшение отдачи тепла и увеличение образования тепла в организме, в результате сохраняется постоянство температуры внутренней среды.

36. По отклонению (или по рассогласованию, или по ошибке). В этом случае осуществляется саморегуляция по выходу из системы, когда произошли изменения (рассогласование, ошибка) в самой системе, приведшие к изменению результата (показателю гомеостаза). Эти изменения регистрируются рецепторами внутренней среды, включается канал обратной связи, несущий информацию об изменениях в управляющее устройство, которое посылает сигналы в исполнительное звено, в результате возникшая ошибка устраняется.

37. С прогнозированием. Благодаря этому принципу система готовится к предстоящему действию фактора, которого еще нет. Например, выделение желудочного сока и слюноотделение в ожидании приема пищи.

Всю систему управления функциями организма можно представить в виде трех иерархических уровней:

низший уровень, или местная (внутриорганная) регуляция. Обеспечивает саморегуляцию деятельности внутренних органов, относительно независимую от центральных влияний.

Внутрисистемный уровень. Обеспечивает автоматическую саморегуляцию деятельности определенной физиологической системы с подключением центральных механизмов (низших уровней ЦНС). Например, поддержание артериального давления за счет регуляции работы сердца и тонуса сосудов бульбарным отделом ЦНС.

Межсистемный, или высший уровень. Это уровень целостного организма, обеспечивающий согласованную деятельность многих физиологических систем, направленную на достижение полезного результата при взаимодействии организма с окружающей средой. Это управление осуществляется высшими отделами ЦНС

Все уровни взаимодействуют между собой по принципу субординации и иерархии: вышележащий уровень контролирует деятельность нижележащего. Такая многоуровневость управляющих механизмов обеспечивает надежность живых систем – способность сохранять целостность и выполнять свойственные ей функции в течение определенного времени. Свойство надежности обеспечивается рядом принципов: избыточности составляющих элементов, резервирование функций, дублирование и взаимозаменяемости функций, периодичности функционирования и т.д. Результат воздействия регуляторного сигнала зависит не только от характеристик самого сигнала, но и от исходного состояния регулируемой системы, в частности, от её реактивности – способности реагировать изменениями функций на раздражители внешней и внутренней среды. В основе функционирования регулирующих и регулируемых систем лежат 2 фундаментальных процесса: возбуждение и торможение.

4.4. Межнейронные взаимодействия.

В основе деятельности мозга лежат механизмы, обеспечивающие передачу импульсов с нейрона на нейрон. На каждом этапе переработки информации в качестве функциональной единицы выступает не отдельная клетка, а клеточное объединение – нейронные ансамбли. Объединение нейронов может быть запрограммировано генетически и основано на так называемых жестких связях. Жесткие взаимодействия нейронов составляют «скелет» нервной системы и являются основой её существования. Повреждение жестких связей сопровождается нарушением соответствующей функции. Но здоровый мозг человека обладает значительной структурной пластичностью и способен в течение жизни образовывать новые связи между нейронами – временные (гибкие) связи. При повреждении гибких звеньев функции могут восстанавливаться за счет образования новых временных связей. Многообразие психической деятельности связано с пластическими свойствами мозга, т.е. с образованием временных связей, благодаря которым обеспечивается более гибкое взаимодействие с окружающей средой. Нейронные ансамбли формируют различные уровни интеграции нейронов. Самое простое объединение нейронов – последовательная цепь нервных клеток, взаимодействие между которыми необходимо для обеспечения наиболее простых ответных реакций. Более сложные объединения - нейронные сети. Среди них выделяют: 1- локальные сети, которые удерживают информацию в пределах одного уровня ЦНС. В центральной зоне такой сети обычно функционируют возбуждающие нейроны, а по периферии – тормозные; 2 – иерархические сети, образованные связями между нейронами различных уровней ЦНС. Причем количество нейронов от уровня к уровню меняется: увеличение количества взаимодействующих нейронов формирует дивергентные (расширяющиеся) сети, уменьшение – конвергентные(суживающиеся) сети. При передачи возбуждения от одного нейрона к другому по коллатералям (возвратным ветвям) отростков возбуждение возвращается к первому нейрону. Так образуется ещё одна структура нейронной сети: кольцевой тип взаимодействия нейронов (нейронные ловушки), благодаря которым возбуждение может длительно циркулировать и удерживаться в данной нейронной сети.

4.5. Передача возбуждения в синапсах.

Передача возбуждения от одного нейрона к другому, а также от нервной клетки к исполнительному органу осуществляется через синапсы (от греческого-смыкать, связывать, соединять). Термин был введен в 1897г. английским физиологом Ч.Шеррингтоном. Синапсы во многом обеспечивают всё многообразие функций мозга. Любой синапс состоит из трёх структурных компонентов: пресинапса – окончание аксона нейрона, от которого передается возбуждение; постсинапса – структура, воспринимающая возбуждение; между ними – синаптическая щель. По локализации выделяют центральные синапсы, обеспечивающие передачу возбуждения между нейронами в ЦНС, и периферические синапсы, осуществляющие передачу сигнала с нерва на исполнительный орган. В свою очередь центральные синапсы подразделяются (в зависимости от локализации постсинапса) на аксо-дендритические, аксо-соматические и аксо-аксональные синапсы; реже встречаются дендро-дендритические синапсы. По механизму передачи возбуждения синапсы разделяют на электрические, химические и смешанные. В электрических синапсах (эфапсах) синаптическая щель не превышает 4 нм., в них ионные каналы образуют мостики между пре- и постсинаптический мембраной, что способствует беспрепятственному распространению электрического сигнала с пре- на постсинапс подобно тому, как передается возбуждение по нервному волокну. В электрическом синапсе генератором постсинаптического тока является пресинаптическая мембрана, т.к. в ней возникает ПД, который распространяется на постсинаптическую мембрану. В ЦНС человека электрические синапсы очень немногочисленны и встречаются в древних структурах мозга. Подобные синапсы имеются в гладкой и сердечной мышце, что позволяет сравнить эти мышцы с функциональным синцитием. Свойства же нервной системы человека связаны с особенностями передачи возбуждения в химических синапсах. В этих синапсах синаптическая щель довольно широкая (10-50 нм), через такую щель электрический импульс пройти не может, поэтому здесь существует другой усиливающий механизм передачи возбуждения с помощью химических веществ- медиаторов или нейротрансмиттеров. Медиаторы синтезируются в окончании аксона и накапливаются в пресинапсе в синаптических пузырьках. Когда ПД достигает пресинапса, происходит высвобождение медиатора из везикул. В этом важную роль играют ионы кальция, которые поступают внутрь окончания из внеклеточной жидкости по электровозбудимым кальциевым каналам. Попадая в цитоплазму синаптического окончания, кальций входит в связь с белками оболочки пузырьков, что приводит к сжатию мембраны пузырьков и выбросу медиатора в синаптическую щель. Особенностью постсинаптической мембраны в химическом синапсе является то, что здесь нет электровозбудимых, а есть хемовозбудимые ионные каналы, в состав которых входит транспортная система ("ворота") и участок связывания («белок-рецептор»). К каждому медиатору есть свой рецептор, чаще – несколько видов рецепторов. Взаимодействие медиатора с соответствующем рецептором приводит к открытию определенных ионных каналов (чаще – натриевых каналов, в результате натрий проникает в клетку), что изменяет исходный потенциал постсинаптической мембраны и вызывает образование постсинаптического потенциала. При деполяризации постсинаптической мембраны (в случае увеличения проницаемости для ионов натрия) возникает возбуждающий постсинаптический потенциал (ВПСП), который при достижении критического уровня деполяризациипереходит в потенциал действия (ПД). Если в результате взаимодействия медиатора с рецептором открываются каналы для ионов калия или хлора, то на постсинаптической мембране происходит явление гиперполяризации и возникновение тормозного постсинаптического потенциала (ТПСП). Следовательно, при передачи возбуждения от одного нейрона к другому, на втором нейроне может возникнуть как возбуждение, так и торможение. Знак синаптического действия определяется не столько медиатором, сколько свойствами рецепторов на постсинаптической мембране, которые могут контролировать разные ионные каналы. Один и тот же медиатор может вступать в реакцию с различными рецепторами постсинаптической мембраны и вызывать противоположный эффект. Высвобождение медиатора носит квантовый (дискретный) характер. При поступлении нервного импульса в пресинапс высвобождается определенная порция медиатора, от количества медиатора в данной порции зависит величина постсинаптического потенциала. На количество же выбрасываемого медиатора влияет содержание ионов кальция в пресинапсе. Накопления кальция в пресинаптическом окончании улучшает эффективность работы химического синапса. Медиатор, оставшийся в синаптической щели и не вступивший в реакцию с рецептором, разрушается соответствующим ферментом (для каждого медиатора есть свой фермент). Таким образом, весь механизм передачи возбуждения в химическом синапсе можно представить в виде последовательной цепи следующих процессов: поступление нервного импульса в пресинаптическое окончание – открытие кальциевых каналов в пресинапсе – вход кальция в пресинапс – высвобождение медиатора из пресинапса – взаимодействие медиатора с постсинаптическим рецептором – активация хемовозбудимых ионных каналов постсинапса – формирование постсинаптического потенциала – достижение критического уровня – возникновение нервного импульса на постсинапсе.

 

4.6. Свойства химических синапсов.

Передача возбуждения в химических синапсах имеет ряд особенностей, отличающих их от электрических синапсов и нервных проводников:

1 – одностороннее проведение возбуждения. Поскольку медиатор находится только в пресинапсе, то возбуждение проходит строго в одном направлении- от пресинапса в постсинапс.

2 – наличие синаптической задержки. Все процессы, происходящие в синапсе длятся 2-3 мсек.

3 – низкая функциональная лабильность. В связи с задержкой возбуждения синапсы не способны пропускать через себя большое количество импульсов.

4 – обеспечивают как возбуждение, так и торможение постсинаптического нейрона, так как при химической передаче активные процессы возникают на постсинаптической мембране, а при электрической передачи – на пресинаптической (передается только возбуждение)

5– при химической передаче синапс сохраняет следы предшествующей активности.

возникновение ПД на постсинаптической мембране зависит от количества медиатора и не подчиняется закону «всё или ничего».

химические синапсы более чувствительны к действию различных химических веществ и ядов.

химические синапсы быстро утомляются, что связано с истощением запасов заготовленного медиатора и понижением чувствительности к медиатору постсинаптической мембраны.

 

4.7. Медиаторы нервной системы.

В настоящее время выделено большое количество химических веществ, участвующих в передаче возбуждения, т.е. обладающих медиаторной функцией. Медиаторная функция химических веществ определяется по ряду критериев:

1 – наличие их (веществ) в пресинапсе;

выделение этих веществ под влиянием нервного импульса;

действие их на постсинаптическую мембрану(наличие соответствующего хеморецептора на постсинаптической мембране);

наличие в синаптической щели фермента, разрушающего и инактивирующего данное вещество.

Согласно перечисленным критериям к медиатором можно отнести несколько групп веществ: 1- ацетилхолин. Это самый распространенный медиатор. К этому медиатору есть два вида рецепторов – Н-холинорецепторы (никотиночувствительные) и М-холинорецепторы (мускариночувствительные). Н-холинорецепторы находятся в скелетных мышцах и на постганглионарных нейронах вегетативной нервной системы, М-холинорецепторы – в нейронах головного мозга, в сердце и других внутренних органах. Нейроны головного мозга, имеющие М-холинорецепторы, играют важную роль в проявлении психических функций. С гибелью таких нейронов связывают развитие старческого слабоумия (Болезнь Альцгеймера). 2- группа катехоламинов (адреналин, норадреналин, дофамин,) 3- серотонин; 4- нейтральные аминокислоты (глютаминовая, аспарагиновая); 5- кислые аминокислоты (гамма-аминомасляная кислота или ГАМК и глицин). Существует несколько механизмов, осуществляющих связывание высвобожденной молекулы с рецептором и вызывающих последующие изменения в постсинаптическом нейроне. Когда эти изменения ограничиваются мембраной постсинаптического нейрона и приводят к возникновению постсинаптического потенциала, тогда высвобождаемая молекула действует как типичный или классический медиатор. Эти вещества относятся к низкомолекулярным и водорастворимым соединениям с кратковременным действием. Примером типичного медиатора является ацетилхолин. Если высвобожденная молекула инициирует изменения, происходящие в цитоплазме или ядре клетки и вызывает более сложные эффекты (чаще всего это осуществляется с помощью посредников), тогда говорят о модуляторах. Эти вещества обладают более длительным действием. К модуляторам также относятся вещества, влияющие на выделение, связывание или действие типичных медиаторов. Промежуточное место между типичными медиаторами и модуляторами занимают катехоламины – это «медиомодуляторы». К модуляторам относят большую группу высокомолекулярных соединений – нейропептидов. Эти вещества синтезируются клетками головного мозга и имеют целый ряд отличий от других информационных субстанций:

нейропептиды в основном действуют как модуляторы или регуляторы нейронов, они могут изменять реакции нервных клеток на классические медиаторы. Но они могут выполнять и передаточную (медиаторную) функцию. Например, вещество Р (от слова «powder»-порошок) участвует в передаче болевой чувствительности.

нейропептиды обладают высокой биологической активностью;

эти вещества способны индуцировать выход во внутреннюю среду (кровь, лимфу и т.д.) других пептидов. Они запускают каскад процессов, которые развертываются уже без участия исходного пептида.

нейропептиды полифункциональны. Они участвуют в регуляции множества мозговых функций. Например, эндогенные опиаты (эндорфины и энкефалины) участвуют в защитных реакциях при стрессе, обезболивании, вызывают положительные эмоции и т.д.

нейропептиды являются совершенным инструментом осуществления интегративной деятельности мозга, они способны инициировать целостное поведение или отдельные поведенческие акты. Они составляют биохимическую основу для формирования следов памяти;

основное место действия нейропептидов – неспецифические структуры мозга, участвующие в регуляции функционального состояния мозга.

 




Поделиться с друзьями:


Дата добавления: 2015-06-26; Просмотров: 4166; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.